4.函數(shù)f(x)=lnx+2x-7在以下哪個(gè)區(qū)間內(nèi)一定有零點(diǎn)( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

分析 根據(jù)函數(shù)的單調(diào)性,零點(diǎn)的存在性定理求解特殊函數(shù)值即可判斷.

解答 解:∵函數(shù)f(x)=lnx-7+2x,x∈(0,+∞)單調(diào)遞增
f(1)=0-7+2=-5,
f(2)=ln2-3<0
f(3)=ln3-1>0
∴根據(jù)函數(shù)零點(diǎn)的存在性定理得出:零點(diǎn)所在區(qū)間是(2,3)
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性,零點(diǎn)的存在性定理,難度不大,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.f(x)=2sin(x+$\frac{π}{2}$)sin(x+$\frac{7π}{3}$)-$\sqrt{3}$sin2x+sin(x+π)cos(x+3π)
(1)求函數(shù)f(x)的單調(diào)增區(qū)間及對(duì)稱軸方程;
(2)若△ABC的三邊分別為a,b,c所對(duì)的角分別為A,B,C,若三邊成等比數(shù)列,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知集合A={x|ax2+2x+1=0,a∈R},有且只有一個(gè)真子集,則a的取值集合為{0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知三棱錐A-BCD的頂點(diǎn)都在球O的球面上,AB⊥平面BCD,∠BCD=90°,AB=BC=CD=2,則球O的表面積是12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{x+1,x<1}\\{-x+3,x≥1}\end{array}}\right.$,則$f[{f({\frac{5}{2}})}]$等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若直線l:y=kx+1(k<0)與圓C:x2+4x+y2-2y+3=0相切,則直線l與圓D:(x-2)2+y2=3的位置關(guān)系是( 。
A.相交B.相切C.相離D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}的通項(xiàng)公式是an=(-1)nn,則a1+a2+a3+…+a10=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=cos2x+2sinxcos(x+$\frac{π}{6}$)+$\sqrt{3}$sinxcosx.
(1)求函數(shù)f(x)的最大值及此時(shí)x的值;
(2)若將函數(shù)f(x)的圖象沿x軸向右平移m個(gè)單位長(zhǎng)度后得到的圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱,求正實(shí)數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的通項(xiàng)公式是an=n•2n-1,bn=$\frac{{a}_{n+2}}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案