7.對于實數(shù)a,b,定義運算“?”:a?b=$\left\{\begin{array}{l}{a}^{2}-ab,a≤b\\^{2}-ab,a>b\end{array}\right.$,設(shè)f(x)=(2x-1)?(x-1),且關(guān)于x的方程f(x)-m=0恰有三個互不相等的實數(shù)根,則實數(shù)m的取值范圍是(0,$\frac{1}{4}$).

分析 根據(jù)題意確定函數(shù)的解析式為f(x)=$\left\{\begin{array}{l}2{x}^{2}-x,x≤0\\ x-{x}^{2},x>0\end{array}\right.$,畫出函數(shù)的圖象從圖象上觀察當(dāng)關(guān)于x的方程為f(x)=m(m∈R)恰有三個互不相等的實數(shù)根時m的取值范圍.

解答 解:由 2x-1≤x-1 可得 x≤0,由 2x-1>x-1 可得 x>0.
∴根據(jù)題意得f(x)=$\left\{\begin{array}{l}(2{x-1)}^{2}-(2x-1)(x-1),x≤0\\({x-1)}^{2}-(2x-1)(x-1),x>0\end{array}\right.$.
即 f(x)=$\left\{\begin{array}{l}2{x}^{2}-x,x≤0\\ x-{x}^{2},x>0\end{array}\right.$,
畫出函數(shù)的圖象,從圖象上觀察當(dāng)關(guān)于x的方程為f(x)=m(m∈R)恰有三個互不相等的實數(shù)根時,

函數(shù)的圖象和直線y=m有三個不同的交點.
再根據(jù)函數(shù)的極大值為f($\frac{1}{2}$)=$\frac{1}{4}$,
可得m的取值范圍是(0,$\frac{1}{4}$),
故答案為:(0,$\frac{1}{4}$).

點評 本題主要考查函數(shù)的零點的定義,函數(shù)的零點與方程的根的關(guān)系,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.實數(shù)x、y,不等式組$\left\{\begin{array}{l}{x≥1且y≤2}\\{y≥kx-3k+2}\end{array}\right.$所確定的可行域內(nèi),若目標(biāo)函數(shù)z=y-x僅在點(3,2)取得最小值,則實數(shù)k的取值范圍是( 。
A.(0,2)B.(1,2)C.[0,1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且$sinC=\frac{56}{65},sinB=\frac{12}{13},b=3$,則c=$\frac{14}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|x2≥1},B={x|y=$\sqrt{1-lo{g}_{2}x}$},則A∩B=(  )
A.(-∞,1]∪(1,2)B.(-∞,1]∪(2,+∞)C.(0,2]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.根據(jù)條件求下列各函數(shù)的解析式:
(1)已知f(x)是二次函數(shù),若f(0)=0,f(x+1)=f(x)+x+1,求f(x).
(2)已知$f(\sqrt{x}+1)=x+2\sqrt{x}$,求f(x)
(3)若f(x)滿足$f(x)+2f(\frac{1}{x})=ax$,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個扇形的面積為3π,弧長為2π,則這個扇形中心角為(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.log5125的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列命題中正確的個數(shù)是( 。
 ①命題“任意x∈(0,+∞),2x>1”的否定是“任意x∉(0,+∞),2x≤1;
 ②命題“若cosx=cosy,則x=y”的逆否命題是真命題;
 ③若命題p為真,命題¬q為真,則命題p且q為真;
 ④命題“若x=3,則x2-2x-3=0”的否命題是“若x≠3,則x2-2x-3≠0”.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{1}{2}a{x^2}+3lnx,g(x)=-bx$,其中a,b∈R.設(shè)h(x)=f(x)-g(x),若$f'(\frac{{\sqrt{2}}}{2})=0$,且f′(1)=g(-1)-2.
(1)求a,b的值;
(2)求函數(shù)h(x)的圖象在點(1,-4)處的切線方程.

查看答案和解析>>

同步練習(xí)冊答案