12.一個(gè)扇形的面積為3π,弧長(zhǎng)為2π,則這個(gè)扇形中心角為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{2π}{3}$

分析 由扇形面積公式得θr=2π,$\frac{1}{2}$θr2=3π,先解出r值,即可得到θ值.

解答 解:設(shè)這個(gè)扇形中心角的弧度數(shù)是θ,半徑等于r,則由題意得  θr=2π,$\frac{1}{2}$θr2=3π,
解得 r=3,θ=$\frac{2π}{3}$.
故選:D.

點(diǎn)評(píng) 本題考查扇形的面積公式,弧長(zhǎng)公式的應(yīng)用,得到θr=2π,$\frac{1}{2}$θr2=3π,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列四個(gè)命題:
(1)函數(shù)f(x)=2x+1(x∈N)的圖象是一條直線;
(2)函數(shù)$f(x)=\frac{1}{x}$在(-∞,0)時(shí)是減函數(shù),在(0,+∞)也是減函數(shù),所以f(x)在定義域上是減函數(shù);
(3)f(x)=x2-2|x|-3的遞增區(qū)間為[-1,0]和[1,+∞);
(4)若函數(shù)f(x)=ax2+bx+2與x軸沒有交點(diǎn),則b2-8a<0且a>0.
其中正確命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=4x-a•2x+1-6,x∈[0,1],
(1)若函數(shù)有零點(diǎn),求a的取值范圍;
(2)若不等式f(x)+3a+6≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知圓C的圓心為極坐標(biāo):C($\sqrt{2}$,$\frac{π}{4}$),半徑r=$\sqrt{3}$.
(1)求圓C的極坐標(biāo)方程;
(2)若過點(diǎn)P(0,1)且傾斜角α=$\frac{π}{6}$的直線l交圓C于A,B兩點(diǎn),求|PA|2+|PB|2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.對(duì)于實(shí)數(shù)a,b,定義運(yùn)算“?”:a?b=$\left\{\begin{array}{l}{a}^{2}-ab,a≤b\\^{2}-ab,a>b\end{array}\right.$,設(shè)f(x)=(2x-1)?(x-1),且關(guān)于x的方程f(x)-m=0恰有三個(gè)互不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知直線l1:ax+y+a-1=0不經(jīng)過第一象限,且l1⊥l2
(1)求證:直線l1恒過定點(diǎn);
(2)求直線l2傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)數(shù)列{an}滿足:a1=2,an+1=1-$\frac{1}{a_n}$,記數(shù)列{an}的前n項(xiàng)之積為Tn,則T2016的值為(  )
A.-$\frac{1}{2}$B.-1C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若f(x)=$\frac{x}{x+1}$,f1(x)=f(x),fn(x)=fn-1[f(x)](n≥2,n∈N*),則f(1)+f(2)+…f(2011)+f1(1)+f2(1)+f3(1)…f2011(1)=( 。
A.2009B.2010C.2011D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知橢圓的兩個(gè)焦點(diǎn)為F1(-$\sqrt{5}$,0),F(xiàn)2($\sqrt{5}$,0),M是橢圓上一點(diǎn),若MF1⊥MF2,|MF1||MF2|=8,則該橢圓的方程是( 。
A.$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{7}$=1C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

同步練習(xí)冊(cè)答案