9.設f(x)是定義在(0,+∞)上的增函數(shù),且對任意x,y∈(0,+∞),都有f(xy)=f(x)+f(y).
若f(3)=1,f(a)>f(a-1)+2,則a的取值范圍(1,$\frac{9}{8}$).

分析 運用賦值法,令x=y=3,求出f(9)=2,再由f(xy)=f(x)+f(y),將f(a)>f(a-1)+2變形為f(a)>f(9a-9),再根據(jù)函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),列出不等式組$\left\{\begin{array}{l}{a>0}\\{a-1>0}\\{a>9a-9}\end{array}\right.$,解出即可.

解答 解:∵f(3)=1,f(xy)=f(x)+f(y),
∴令x=y=3,則f(9)=f(3)+f(3)=2f(3)=2,
即f(9)=2,
∵f(a)>f(a-1)+2,
∴f(a)>f(a-1)+f(9),
∵f(xy)=f(x)+f(y),
∴f(a-1)+f(9)=f(9a-9),
∴f(a)>f(9a-9),
∵函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),
∴$\left\{\begin{array}{l}{a>0}\\{a-1>0}\\{a>9a-9}\end{array}\right.$,∴1<a<$\frac{9}{8}$,
∴實數(shù)a的取值范圍是:(1,$\frac{9}{8}$).
故答案為:(1,$\frac{9}{8}$).

點評 本題主要考查函數(shù)的單調(diào)性及應用,注意不要忘記函數(shù)的定義域,同時考查解決抽象函數(shù)問題常用的方法:賦值法,注意條件的反復運用和靈活運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.設數(shù)列{an}的前n項和為Sn,滿足2Sn=an+1-2n+1+1,(n∈N*,且a1=1.
(1)設cn=$\frac{{a}_{n}}{{2}^{n}}$(n∈N+),求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足bn=n(an+2n),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)y=f(1-x2)的定義域[-2,3],則函數(shù)g(x)=$\frac{f(2x+1)}{x+2}$的定義域是(  )
A.(-∞,-2)∪(-2,3]B.[-8,-2)∪(-2,1]C.[-$\frac{9}{2}$,-2)∪(-2,0]D.[-$\frac{9}{2}$,-2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若實數(shù)a,b滿足$\frac{4}{a}+\frac{1}=\sqrt{ab}$,則當ab取得最小值時b的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.寫出下列說法正確的序號③
①“若x2+y2=0,則x、y全為0”的逆命題是假命題
②“若x、y都是偶數(shù),則x+y是偶數(shù)”的否命題是“若x、y都不是偶數(shù),則x+y不是偶數(shù)”
③命題p:拋物線y2=8x的準線方程是x=-2;命題q:半徑為2,母線長為3的圓錐側面積為6π;p∧q是真命題
④已知b?α;“a∥b”是“a∥α”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.求滿足下列函數(shù)的解析式.
(1)f(1+x)=4x+2;
(2)$f(\frac{1}{2}x)=2{x^2}-1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知圓x2+y2=4上存在兩點到點(m,m)(m>0)的距離為1,則實數(shù)m的取值范圍為$\frac{\sqrt{2}}{2}$<a<$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若函數(shù)f(x)=$\frac{mx-2}{x-2}$在區(qū)間(2,+∞)上是增函數(shù),則實數(shù)m的取值范圍是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.解答下列問題
(1)計算(-$\frac{7}{8}$)0+($\frac{1}{8}$)${\;}^{-\frac{1}{3}}$+$\root{4}{(3-π)^{4}}$的值;
(2)已知2a=5b=100,求$\frac{a+b}{ab}$ 的值.

查看答案和解析>>

同步練習冊答案