18.若函數(shù)f(x)=$\frac{mx-2}{x-2}$在區(qū)間(2,+∞)上是增函數(shù),則實(shí)數(shù)m的取值范圍是(-∞,1).

分析 根據(jù)f(x)=m+(2m-2)$•\frac{1}{x-2}$ 在區(qū)間(2,+∞)上是增函數(shù),可得2m-2<0,由此求得m的范圍.

解答 解:函數(shù)f(x)=$\frac{mx-2}{x-2}$=$\frac{m(x-2)+2m-2}{x-2}$=m+(2m-2)$•\frac{1}{x-2}$ 在區(qū)間(2,+∞)上是增函數(shù),
故2m-2<0,求得 m<1,
故答案為:(-∞,1).

點(diǎn)評 本題主要考查函數(shù)的單調(diào)性的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R,a≠0),f(-2)=f(0)=0,f(x)的最小值為-1.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=f(x)-mx,(0≤x≤3)求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)f(x)是定義在(0,+∞)上的增函數(shù),且對任意x,y∈(0,+∞),都有f(xy)=f(x)+f(y).
若f(3)=1,f(a)>f(a-1)+2,則a的取值范圍(1,$\frac{9}{8}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖1,一座拋物線型拱橋,水面離拱頂8m,水面寬16m,如圖2,一艘船的寬度為12m,船的甲板與水面距離為1m,船上兩根高為a m的桿垂直于船的甲板,且到甲板左右兩邊的距離為2m,現(xiàn)船正面正對橋洞(船截面的中軸線與拋物線對稱軸重合時(shí))通過該拱橋
(1)當(dāng)a=3時(shí),該漁船是否能安全通過該拱橋?
(2)若該漁船能安全通過該拱橋,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知1<x<10,令a=lgx,b=log2(lgx),c=2lgx,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.b<a<cC.c<a<bD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x+$\frac{1}{x}$-4.
(1)求函數(shù)f(x)的解析式;
(2)若當(dāng)x∈[-1,1]時(shí),不等式a•3x-f(3x)≤0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,角A,B,C的對邊分別為a,b,c,cos2$\frac{A}{2}$=$\frac{b+c}{2c}$,則△ABC的形狀一定是( 。
A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}+1}\\{{2^x}}\end{array}}\right.\begin{array}{l}{(x≤0)}\\{(x>0)}\end{array}$,則滿足f(x)=4的x的取值是2或$-\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實(shí)數(shù)x、y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$則目標(biāo)函數(shù)$z=\frac{y+2}{x-5}$的最大值為( 。
A.3B.4C.-3D.$-\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案