• <thead id="ppaba"><menuitem id="ppaba"></menuitem></thead>
  • <dl id="ppaba"><menuitem id="ppaba"><dfn id="ppaba"></dfn></menuitem></dl>
    13.設集合M={1,2,3,…,n}(n≥3),記M的含有三個元素的子集個數(shù)為Sn,同時將每一個子集中的三個元素由小到大排列,取出中間的數(shù),所有這些中間的數(shù)的和記為Tn
    (1)求$\frac{{T}_{3}}{{S}_{3}}$,$\frac{{T}_{4}}{{S}_{4}}$,$\frac{{T}_{5}}{{S}_{5}}$,$\frac{{T}_{6}}{{S}_{6}}$的值;
    (2)猜想$\frac{{T}_{n}}{{S}_{n}}$的表達式,并證明之.

    分析 (1)根據(jù)所給的定義求出即可,
    (2)猜想$\frac{{T}_{n}}{{S}_{n}}$=$\frac{n+1}{2}$.用數(shù)學歸納法證明之.

    解答 解:(1)當n=3時,M={1,2,3),S3=1,T3=2,$\frac{{T}_{3}}{{S}_{3}}$=2,
    當n=4時,M={1,2,3,4),S4=4,T4=2+2+3+3=10,$\frac{{T}_{4}}{{S}_{4}}$=$\frac{5}{2}$,
    $\frac{{T}_{5}}{{S}_{5}}$=3,$\frac{{T}_{6}}{{S}_{6}}$=$\frac{7}{2}$
    (2)猜想$\frac{{T}_{n}}{{S}_{n}}$=$\frac{n+1}{2}$.
    下用數(shù)學歸納法證明之.
    證明:①當n=3時,由(1)知猜想成立;
    ②假設當n=k(k≥3)時,猜想成立,
    即$\frac{{T}_{k}}{{S}_{k}}$=$\frac{k+1}{2}$,而Sk=Ck3,所以得Tk=$\frac{k+1}{2}$Ck3,
    則當n=k+1時,易知Sk+1=Ck+13,
    而當集合M從{1,2,3,…,k}變?yōu)閧1,2,3,…,k,k+1}時,Tk+1在Tk的基礎上增加了1個2,2個3,3個4,…,和(k-1)個k,
    所以Tk+1=Tk+2×1+3×2+4×3+…+k(k-1),
    =$\frac{k+1}{2}$Ck3+2(C22+C32+C42+…+Ck2),
    =$\frac{k+1}{2}$Ck3+2(C33+C32+C42+…+Ck2),
    =$\frac{k-2}{2}$Ck+13+2Ck+13
    =$\frac{k+2}{2}$Ck+13,
    =$\frac{(k+1)+1}{2}$Sk+1,
    即$\frac{{T}_{k+1}}{{S}_{k+1}}$=$\frac{(k+1)+1}{2}$.
    即所以當n=k+1時,猜想也成立.
    綜上所述,猜想成立.

    點評 本題考查了數(shù)學歸納法、遞推公式、數(shù)列的通項公式,考查了猜想歸納能力與計算能力,屬于中檔題.

    練習冊系列答案
    相關習題

    科目:高中數(shù)學 來源: 題型:解答題

    20.求下列函數(shù)的值域
    (1)y=3sinx-2;
    (2)y=$\frac{1}{2}$-sinx;
    (3)y=2|sinx|

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:解答題

    4.在四棱錐P-ABCD中,側面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥DC,∠ADC=90°,AB=AD=PD=1,CD=2,點E位PC的中點
    (Ⅰ)求證:BC⊥平面PBD;
    (Ⅱ)求E到平面PBD的距離.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:解答題

    1.設函數(shù)f(x)=|f1(x)-f2(x)|,其中冪函數(shù)f1(x)的圖象過點(2,$\sqrt{2}$),且函數(shù)f2(x)=ax+b(a,b∈R).
    (1)當a=0,b=1時,寫出函數(shù)f(x)的單調區(qū)間;
    (2)設μ為常數(shù),a為關于x的偶函數(shù)y=log4[($\frac{1}{2}$)x+μ•2x](x∈R)的最小值,函數(shù)f(x)在[0,4]上的最大值為u(b),求函數(shù)u(b)的最小值;
    (3)若對于任意x∈[0,1],均有|f2(x)|≤1,求代數(shù)式(a+1)(b+1)的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:填空題

    8.已知$|{\begin{array}{l}{cos75°}&{-sinα}\\{sin75°}&{cosα}\end{array}}|=\frac{1}{3}$,則cos(30°+2α)=$\frac{7}{9}$.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:填空題

    18.函數(shù)y=x-ex的單調減區(qū)間是(0,+∞).

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:選擇題

    5.如圖正方體ABCD-A1B1C1D1的棱長為2,線段B1D1上有兩個動點E、F,且EF=1,則下列結論中錯誤的是( 。
    A.EF∥平面ABCDB.AC⊥BE
    C.三棱錐A-BEF體積為定值D.△BEF與△AEF面積相等

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:選擇題

    2.已知F1,F(xiàn)2是橢圓$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{9}$=1的兩個焦點,過點F2的直線交橢圓于M,N兩點,在△F1MN中,若有兩邊之和是14,則第三邊的長度為( 。
    A.6B.5C.4D.3

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:選擇題

    3.設p:$(3{x^2}+ln3)'=6x+\frac{1}{3}$,q:函數(shù)y=(3-x2)ex的單調遞增區(qū)是(-3,1),則p與q的復合命題的真假是(  )
    A.“p∨q”假B.“p∧q”真C.“¬q”真D.“p∨q”真

    查看答案和解析>>

    同步練習冊答案