15.已知圓C:x2+y2+2x-4y+m=0與y軸相切.
(1)求m的值;
(1)若圓C的切線在x軸和y軸上的截距相等,求該切線的方程;
(2)從圓C外一點(diǎn)P(x,y)向圓引切線,M為切點(diǎn),O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使|PM|最小的點(diǎn)P的坐標(biāo).

分析 (1)利用圓C:x2+y2+2x-4y+m=0與y軸相切,求出m的值;
(2)求出圓心與半徑,再分類討論,設(shè)出切線方程,利用直線是切線建立方程,即可得出結(jié)論;
(3)先確定P的軌跡方程,再利用要使|PM|最小,只要|PO|最小即可.

解答 解:(1)圓C:x2+y2+2x-4y+m=0,可化為(x+1)2+(y-2)2=5-m,所以5-m=1,
所以m=4;
(2)當(dāng)切線過(guò)原點(diǎn)時(shí),切線方程為x=0.
當(dāng)切線不過(guò)原點(diǎn)時(shí),設(shè)切線方程為x+y=a,則$\frac{|-1+2-a|}{\sqrt{2}}$=1,所以a=1±$\sqrt{2}$,即切線方程為x+y-1±$\sqrt{2}$=0.
綜上知,切線方程為x=0或x+y+1=0或x+y-1±$\sqrt{2}$=0;
(2)因?yàn)閨PO|2+r2=|PC|2,所以x2+y2+1=(x+1)2+(y-2)2,即x-y+2=0.
要使|PM|最小,只要|PO|最小即可.
當(dāng)直線PO垂直于直線x-y+2=0時(shí),即直線PO的方程為x+y=0時(shí),|PM|最小,
此時(shí)P點(diǎn)即為兩直線的交點(diǎn),得P點(diǎn)坐標(biāo)(-1,1).

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查學(xué)生分析解決問(wèn)題的能力,考查學(xué)生的計(jì)算能力,考查分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,E、F、G、H分別為正方體ABCD-A1B1C1D1的棱AB、BC、CC1、D1A1的中點(diǎn),證明:E、F、G、H四點(diǎn)共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2|$\overrightarrow$|=2,且($\overrightarrow{a}$-$\overrightarrow$)⊥($\overrightarrow{a}$+3$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$的夾角的正弦值為$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求函數(shù)y=x+2$\sqrt{1-x}$值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.2015年某工廠生產(chǎn)某種產(chǎn)品,每日的成本C(單位:萬(wàn)元)與日產(chǎn)量x(單位:噸)滿足函數(shù)關(guān)系式C=x+5,每日的銷售額S(單位:萬(wàn)元)與日產(chǎn)量x的函數(shù)關(guān)系式:S=$\left\{\begin{array}{l}{3x+\frac{k}{x-8}+7,0<x<6}\\{16,x≥6}\end{array}\right.$,已知每日的利潤(rùn)L=S-C,且當(dāng)x=2時(shí),L=3.
(1)求k的值;
(2)當(dāng)日產(chǎn)量為多少噸時(shí),每日的利潤(rùn)可以達(dá)到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.從A、B、C、D、E等5名短跑運(yùn)動(dòng)員中,任選4名排在標(biāo)號(hào)分別為1、2、3、4的跑道上,求運(yùn)動(dòng)員E排在1、2跑道上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=ax+$\frac{x}$(a,b為常數(shù)),且f(1)=$\frac{5}{2}$,f(2)=$\frac{17}{4}$.
(1)求a,b的值;
(2)求函數(shù)f(x)在[$\frac{1}{4}$,2]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知x2+y2=4,求x+2y的最大值,并求取得最值時(shí)的x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知圓的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}\right.$(θ∈[0,2π],θ為參數(shù)),將圓上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的$\sqrt{3}$倍,縱坐標(biāo)不變得到曲線C1;以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為$ρsin({θ+\frac{π}{4}})=4\sqrt{2}$.
(Ⅰ)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程
(Ⅱ)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn) P與曲線C2上點(diǎn)的距離的最小值,并求此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案