A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\sqrt{3}$ | D. | 3$\sqrt{3}$ |
分析 求出底面三角形的面積,底面三角形的所在平面圓的半徑,由平面SAC⊥平面ABC,可將已知中的三棱錐S-ABC補(bǔ)成一個(gè)同底等高的棱柱,即可求解錐S-ABC的體積的最大值.
解答 解:三棱錐O-ABC,A、B、C三點(diǎn)均在球心O的表面上,且AB=BC=2,∠ABC=120°,
∴BC=2$\sqrt{3}$,
∴△ABC外接圓半徑2r=4,即r=2
∴S△ABC=$\frac{1}{2}$×2×2×sin120°=$\sqrt{3}$,OG=$\sqrt{5-4}$=1
由平面SAC⊥平面ABC,可將已知中的三棱錐S-ABC補(bǔ)成一個(gè)同底等高的棱柱,
∴棱錐S-ABC的體積的最大值為$\frac{1}{3}×\sqrt{3}×2$=$\frac{2\sqrt{3}}{3}$.
故選:A
點(diǎn)評(píng) 本題考查棱錐S-ABC的體積的最大值,球的內(nèi)含體與三棱錐的關(guān)系,考查空間想象能力以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{π}{12}$,0) | B. | ($\frac{π}{6}$,0) | C. | ($\frac{π}{3}$,0) | D. | ($\frac{5π}{12}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2014 | B. | 2015 | C. | 2016 | D. | 2017 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$或-$\sqrt{3}$ | B. | $\sqrt{3}$或3$\sqrt{3}$ | C. | $\sqrt{3}$或5$\sqrt{3}$ | D. | 3$\sqrt{3}$或5$\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com