2.已知|$\overrightarrow{a}$|=1與|$\overrightarrow$|=2,且兩向量的夾角<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$,求($\overrightarrow{a}$-2$\overrightarrow$)•$\overrightarrow$.

分析 可由條件求得$\overrightarrow{a}•\overrightarrow=1,{\overrightarrow}^{2}=4$,然后進(jìn)行數(shù)量積的運(yùn)算即可求出$(\overrightarrow{a}-2\overrightarrow)•\overrightarrow$的值.

解答 解:根據(jù)條件,$\overrightarrow{a}•\overrightarrow=|\overrightarrow{a}||\overrightarrow|cos<\overrightarrow{a},\overrightarrow>$=$2cos\frac{π}{3}=1$,${\overrightarrow}^{2}=4$;
∴$(\overrightarrow{a}-2\overrightarrow)•\overrightarrow=\overrightarrow{a}•\overrightarrow-2{\overrightarrow}^{2}=1-8=-7$.

點(diǎn)評 考查向量夾角的概念,以及向量數(shù)量積的運(yùn)算及計(jì)算公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.不等式9x2+6x+1≥0的解集為( 。
A.{x|x$≠-\frac{1}{3}$}B.{-$\frac{1}{3}$}C.D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow a$=(cosα,-2),$\overrightarrow b$=(sinα,1),且$\overrightarrow a$∥$\overrightarrow b$,則2sinαcosα等于( 。
A.3B.-3C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.正方形ABCD的邊長為6,點(diǎn)E,F(xiàn)分別在邊AD,BC上,且DE=EA,CF=2FB,如果對于常數(shù)λ,在正方形ABCD的四條邊上(不含頂點(diǎn))有且只有6個不同的點(diǎn)P,使得$\overrightarrow{PE}•\overrightarrow{PF}=λ$成立,那么λ的取值范圍為( 。
A.$(-3,-\frac{1}{4})$B.(-3,3)C.$(-\frac{1}{4},3)$D.(3,12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知正項(xiàng)等差數(shù)列{an}中,a1+a2+a3=15,若a1+2,a2+5,a3+13成等比數(shù)列,則a10=21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.學(xué)生甲根據(jù)已知的數(shù)據(jù)求出線性回歸方程為y=-$\frac{6}{13}$x+$\frac{50}{13}$,學(xué)生乙抄下了數(shù)據(jù)表與方程,但是后來甲發(fā)現(xiàn)乙抄錄的數(shù)據(jù)表(如表)中有一組符合方程的數(shù)據(jù)中的y錯了,則錯誤的y對應(yīng)的x的值是(  )
x1348
y3310
A.1B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求等差數(shù)列-1,3,7,11,…的前8項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在等比數(shù)列{an}中,a5=24,a1a2a3=27,則有( 。
A.a1=$\frac{3}{2}$,q=2B.a1=-$\frac{3}{2}$,q=2C.a1=2,q=-2D.a1=$\frac{3}{2}$,q=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.三棱錐P-ABC的四個頂點(diǎn)都在半徑為5的球面上,底面ABC所在的小圓面積為9π,則該三棱錐的高的最大值為( 。
A.7B.8C.8.5D.9

查看答案和解析>>

同步練習(xí)冊答案