19.設數(shù)列{an}滿足a1=2,${a_{n+1}}=1-\frac{1}{a_n}$,記數(shù)列前n項的積為Pn,則P2016的值為1.

分析 由a1=2,${a_{n+1}}=1-\frac{1}{a_n}$,可得an+3=an.即可得出.

解答 解:∵a1=2,${a_{n+1}}=1-\frac{1}{a_n}$,
∴a2=$\frac{1}{2}$,a3=-1,a4=2,…,
∴an+3=an
a1a2a3=-1.
∴數(shù)列前2016項的積P2016=(-1)672=1.
故答案為:1.

點評 本題考查了遞推關系、數(shù)列的周期性,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.如圖所示,在正方體ABCD-A1B1C1D1中,點E、F分別是棱DD1、CC1的中點.
(I)求證:直線B1F∥平面A1BE;
(Ⅱ)求直線BE和平面ABB1A1所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.六個人從左到右排成一列,其中甲、乙兩人至少有一人在兩端的排法總數(shù)有( 。
A.48種B.384種C.432種D.288種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設x,y滿足約束條件:$\left\{{\begin{array}{l}{x,y≥0}\\{x-y≥-1}\\{x+y≤3}\end{array}}\right.$,若z=x-y,則z的最大值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.對于函數(shù)y=f(x),若存在定義域D內某個區(qū)間[a,b],使得y=f(x)在[a,b]上的值域也是[a,b],則稱函數(shù)y=f(x)在定義域D上封閉.如果函數(shù)$f(x)=\frac{kx}{1+|x|}$(k≠0)在R上封閉,那么實數(shù)k的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)$f(x)=sin({2x-\frac{π}{4}})({x∈R})$的單調遞增區(qū)間是[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知拋物線C的頂點在原點,對稱軸是x軸,并且經過點P(1,-2),C的準線與x軸相交于點M.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過拋物線C的焦點F的直線l交拋物線于A,B兩點,若$\overrightarrow{AF}=λ\overrightarrow{FB}\;(\frac{3}{4}<λ<2)$,求${\overrightarrow{MA}^2}+{\overrightarrow{MB}^2}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖∠ACB=90°,CD⊥AB于點D,以BD為直徑的⊙O與BC交于點E.
(Ⅰ)求證:BC•CE=AD•DB;
(Ⅱ)若BE=4,點N在線段BE上移動,∠ONF=90°,NF與⊙O相交于點F,求NF的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.“a=1”是函數(shù)f(x)=1-2sin2(ax+$\frac{π}{4}$)在區(qū)間($\frac{π}{12}$,$\frac{π}{6}$)上為減函數(shù)“的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案