15.已知函數(shù)f(x)滿足:當(dāng)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^x}\\ f(x+1)\end{array}\right.{,^{\;}}$$\begin{array}{l}x≥4\\ \\ x<4\end{array}$,則f(2+log23)=( 。
A.$\frac{1}{24}$B.$\frac{1}{12}$C.$\frac{1}{8}$D.$\frac{3}{8}$

分析 直接利用分段函數(shù)以及對(duì)數(shù)運(yùn)算法則求解函數(shù)值即可.

解答 解:2+log23<4,
可得f(2+log23)=f(3+log23)=${(\frac{1}{2})}^{3+{log}_{2}3}$=$\frac{1}{8}×\frac{1}{3}=\frac{1}{24}$.
故選:A.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.cos1740°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知數(shù)列:$\frac{1}{1}$,$\frac{2}{1}$,$\frac{1}{2}$,$\frac{3}{1}$,$\frac{2}{2}$,$\frac{1}{3}$,$\frac{4}{1}$,$\frac{3}{2}$,$\frac{2}{3}$,$\frac{1}{4}$,…,依它的前10項(xiàng)的規(guī)律,這個(gè)數(shù)列的第2013項(xiàng)a2013滿足(  )
A.0<a2013<$\frac{1}{10}$B.$\frac{1}{10}$≤a2013<1C.1≤a2013≤10D.a2013>10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),a1=1,公比為q;等差數(shù)列{bn}中,b1=3,且{bn}的前n項(xiàng)和為Sn,a3+S3=27,q=$\frac{S_2}{a_2}$.
(Ⅰ)求{an}與{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{cn}滿足cn=$\frac{3}{{2{S_n}}}$,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.復(fù)數(shù)$\frac{1-3i}{1-i}$的共軛復(fù)數(shù)是2+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列函數(shù)中,在定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是( 。
A.y=sinx+1B.y=$\frac{1}{x}$C.y=x2D.y=x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓C的圓心在x軸上,并且過(guò)點(diǎn)A(-1,1)和B(1,3)
(Ⅰ)求圓C的方程;
(Ⅱ)若過(guò)點(diǎn)A的直線l被圓C截得的弦長(zhǎng)為$4\sqrt{2}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.集合 A={x|y=$\sqrt{4-x}$},B={x|x≥3},則 A∩B=( 。
A.{x|3≤x≤4}B.{x|x≤3或x≥4}C.{x|x≤3或x>4}D.{x|3≤x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.“sin2α-$\sqrt{3}$cos2α=1”是“α=$\frac{π}{4}$”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案