分析 (Ⅰ)設(shè)圓心為M(a,0),由|MA|=|MB|求得a的值,可得圓心坐標(biāo)以及半徑的值,從而求得圓的方程.
(Ⅱ)求出圓心到直線的距離,即可求直線l的方程.
解答 解:(Ⅰ)∵圓C的圓心在x軸上,設(shè)圓心為M(a,0),由圓過點A(-1,1)和B(1,3),
由|MA|=|MB|可得 MA2=MB2,即(a+1)2+1=(a-1)2+9,求得a=2,
可得圓心為M( 2,0),半徑為|MA|=$\sqrt{10}$,故圓的方程為 (x-2)2+y2=10,
(Ⅱ)直線l被圓C截得的弦長為$4\sqrt{2}$,∴圓心到直線的距離d=$\sqrt{10-8}$=$\sqrt{2}$.
設(shè)直線方程為y-1=k(x+1),即kx-y+k+1=0,
∴$\frac{|3k+1|}{\sqrt{{k}^{2}+1}}$=$\sqrt{2}$,∴k=-1或$\frac{1}{7}$,
∴直線l的方程為x-7y+8=0或x-y=0.
點評 本題主要考查求圓的標(biāo)準(zhǔn)方程,求出圓心的坐標(biāo),是解題的關(guān)鍵,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | [-1,3] | C. | (-1,1) | D. | (-1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{24}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{8}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 焦點在x軸上的雙曲線 | B. | 焦點在y軸上的雙曲線 | ||
C. | 焦點在x軸上的橢圓 | D. | 焦點在y軸上的橢圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com