2.若雙曲線$\frac{y^2}{8}-\frac{x^2}{4}=1$的其漸近線方程為( 。
A.y=±2xB.$y=±\frac{{\sqrt{2}}}{2}x$C.$y=±\frac{1}{2}x$D.$y=±\sqrt{2}x$

分析 直接利用雙曲線的漸近線方程求解即可.

解答 解:雙曲線$\frac{y^2}{8}-\frac{x^2}{4}=1$.a(chǎn)=2$\sqrt{2}$,b=2,雙曲線的其漸近線方程為:$y=±\sqrt{2}x$.
故選:D.

點評 本題考查雙曲線的漸近線方程的求法,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(1,1),若($\overrightarrow{a}$+$λ\overrightarrow$)⊥$\overrightarrow$,則λ等于(  )
A.-2B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在等比數(shù)列{an}中,a5+a6=2,a15+a16=3,則a25+a26的值是( 。
A.$\frac{3}{2}$B.$\frac{9}{4}$C.$\frac{9}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列說法正確的是( 。
A.sin($\frac{π}{3}$)<0B.cos(-80°)<0C.tan200°>0D.cos0°=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列方程表示焦點在x軸上的橢圓是(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1C.$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{4}$=1D.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若集合A={y|y=x2-2x-1,x∈R},集合B={x|-2≤x<8},則A∩B={x|-2≤x<8}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$|\begin{array}{l}{tanθ}&{i}\\{1}&{2}\end{array}|$=i2015+i2016(其中i為虛數(shù)單位),則cosθ=$±\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在區(qū)間[0,3]上隨機地取一個數(shù)x,則事件“-1≤log${\;}_{\frac{1}{2}}$(x+$\frac{1}{2}$)≤1”發(fā)生的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知點P是邊長為4的正方形內(nèi)任一點,則點P到四個頂點的距離均大于2的概率是1$-\frac{π}{4}$.

查看答案和解析>>

同步練習(xí)冊答案