10.已知雙曲線${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一個焦點是(2,0),則b=$\sqrt{3}$;雙曲線漸近線的方程為$y=±\sqrt{3}x$.

分析 利用雙曲線${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一個焦點是(2,0),求出b,即可求出雙曲線漸近線的方程.

解答 解:∵雙曲線${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一個焦點是(2,0),
∴1+b2=4,
∵b>0,
∴b=$\sqrt{3}$,
又a=1,∴雙曲線漸近線的方程為$y=±\sqrt{3}x$
故答案為:$\sqrt{3}$,$y=±\sqrt{3}x$

點評 本題考查雙曲線漸近線的方程,考查學(xué)生的計算能力,正確求出b是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,在△ABC中,∠B=$\frac{π}{2}$,∠BAC的平分線交BC于點D,AD=$\sqrt{2}$,AC=$\sqrt{6}$,則△ABC的面積為$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.2位男生和3位女生共5位同學(xué)站成一排,若3位女生中有且只有兩位女生相鄰,則不同排法的種數(shù)是72種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}x+2\\{x^2}\\ 2x\end{array}$$\begin{array}{l}(x≤-1),\\(-1<x<2),\\(x≥2),\end{array}$如果f(x)=3,那么x的值是( 。
A.1B.$\sqrt{3}$C.$±\sqrt{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)全集U=R,集合A={x|-1<x-m<5},B={x|$\frac{1}{2}$<2x<4}.
(1)當(dāng)m=-1時,求A∩∁UB;
(2)若A∩B=∅,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在數(shù)字1,2,…,n(n≥2)的任意一個排列A:a1,a2,…,an中,如果對于i,j∈N*,i<j,有ai>aj,那么就稱(ai,aj)為一個逆序?qū)Γ浥帕蠥中逆序?qū)Φ膫數(shù)為S(A).
如n=4時,在排列B:3,2,4,1中,逆序?qū)τ校?,2),(3,1),(2,1),(4,1),則S(B)=4.
(Ⅰ)設(shè)排列 C:3,5,6,4,1,2,寫出S(C)的值;
(Ⅱ)對于數(shù)字1,2,…,n的一切排列A,求所有S(A)的算術(shù)平均值;
(Ⅲ)如果把排列A:a1,a2,…,an中兩個數(shù)字ai,aj(i<j)交換位置,而其余數(shù)字的位置保持不變,那么就得到一個新的排列A':b1,b2,…,bn,求證:S(A)+S(A')為奇數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若直線x=a是函數(shù)y=sin(x+$\frac{π}{6}$)圖象的一條對稱軸,則a的值可以是(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.-$\frac{π}{6}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.①x+$\frac{1}{x}$≥2;②|x+$\frac{1}{x}$|≥2;③$\frac{{x}^{2}+{y}^{2}}{xy}$≥2;④$\frac{{x}^{2}+{y}^{2}}{2}$>xy;⑤$\frac{|x+y|}{2}$≥$\sqrt{|xy|}$.其中正確的是②(寫出序號即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在等比數(shù)列{an}中,a1=$\frac{1}{3}$,an=81,Sn=$\frac{364}{3}$.
(1)求公比q;
(2)求項數(shù)n.

查看答案和解析>>

同步練習(xí)冊答案