3.若f(x+y)=f(x)f(y),且f(1)=2,$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2015)}$=4030.

分析 利用f(x+y)=f(x)f(y),可得$\frac{f(n+1)}{f(n)}$=f(1)=2,即可求出$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2015)}$.

解答 解:∵f(x+y)=f(x)f(y),
∴$\frac{f(n+1)}{f(n)}$=f(1)=2,
∴$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2015)}$=2×2015=4030.
故答案為:4030.

點(diǎn)評 本題考查抽象函數(shù),考查學(xué)生分析解決問題的能力,確定$\frac{f(n+1)}{f(n)}$=f(1)=2是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)α,β為互不重合的平面,m,n是互不重合的直線,給出下列四個命題:
①若n⊥β,m∥n,n?α,則m∥α;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∥β,m?α,n?β,則m∥n;
④若α⊥β,α∩β=m,n?α,n⊥m;
其中正確命題的序號為④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在兩坐標(biāo)軸上截距相等且與圓:${x^2}+{({y-\sqrt{2}})^2}=1$相切的直線有3條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列各組函數(shù)表示同一個函數(shù)的是(  )
A.$f(x)=\frac{{{x^2}-1}}{x-1}$,g(x)=x+1B.f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$
C.$f(x)={({\sqrt{x-1}})^2}$,g(x)=|x-1|D.f(x)=2x-1,g(t)=2t-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|-1<x<2},B={x|0<x<3},則A∩B等于( 。
A.(-1,3)B.(0,2)C.(-1,0)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=logax(a>0,a≠1),且f(3)-f(2)=1.
(1)若f(3m-2)<f(2m+5),求實(shí)數(shù)m的取值范圍.
(2)求使f(x-$\frac{2}{x}$)=$lo{g}_{\frac{3}{2}}\frac{7}{2}$成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{{2}^{x}-m}{{2}^{x}-1}$為奇函數(shù),m∈R.
(1)求m的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用單調(diào)性定義證明;
(3)求函數(shù)f(x)在[-2,0)∪(0,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.橢圓中心在原點(diǎn),焦點(diǎn)在x軸上且過兩點(diǎn)$P(3,2\sqrt{7})$,Q(-6,$\sqrt{7}$)求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知f(x)=$\left\{{\begin{array}{l}{x-1(x≥0)}\\{2{x^2}-1(x<0)}\end{array}}$,則f[f(0)]=1.

查看答案和解析>>

同步練習(xí)冊答案