6.若變量x,y滿足約束條件$\left\{\begin{array}{l}y≤x\\ x+y≤4\\ y≥k\end{array}$且z=2x+y的最小值為-3,則k=-1.

分析 由題意作出其平面區(qū)域,解$\left\{\begin{array}{l}{2x+y=-3}\\{x=y}\end{array}\right.$得x=y=-1;從而可得k=-1.

解答 解:由題意作出其平面區(qū)域,

結(jié)合圖象可得,
$\left\{\begin{array}{l}{2x+y=-3}\\{x=y}\end{array}\right.$;
解得,x=y=-1;
故直線y=k過點(diǎn)(-1,-1);
故k=-1;
故答案為:-1.

點(diǎn)評(píng) 本題考查了簡單線性規(guī)劃,作圖要細(xì)致認(rèn)真,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框,輸出的T=( 。
A.17B.29C.44D.52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}中,a1+a2=6,a6-a4=4,函數(shù)f(x)=ax(a>0且a≠1)的圖象過點(diǎn)A(3,$\frac{1}{8}$),B(an,bn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知△ABC的三個(gè)頂點(diǎn)分別為A(3,1),B(-3,-2),C(a,b),且它的重心G關(guān)于點(diǎn)D(1,1)的對(duì)稱點(diǎn)的坐標(biāo)為(1,3.5),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax3+x2f′(1)+1,且f′(-1)=9.
(1)求曲線f(x)在x=1處的切線方程;
(2)若存在x∈(1,+∞)使得函數(shù)f(x)<m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列說法中,正確的是(  )
A.命題“若ax2<bx2,則a<b”的逆命題是真命題
B.命題“x=y,則sinx=siny”的逆否命題為假命題
C.命題“p且q”為假命題,則命題“p”和命題“q”均為假命題
D.命題“?t∈R,t2-t≤0”的否定是?t∈R,t2-t>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=2sin$({x-\frac{α}{2}})cos({x-\frac{α}{2}})+2\sqrt{3}{cos^2}({x-\frac{α}{2}})-\sqrt{3}$,其圖象過點(diǎn)$({\frac{π}{12},0})$,且α∈[0,π].
(I)求α的值及f(x)的最小正周期;
(Ⅱ)若$x∈[{0,\frac{π}{2}}]$,求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)Sn是等比數(shù)列 {an}的前n項(xiàng)和,sm-1=45,sm=93,sm+1=189,則m=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.隨著互聯(lián)網(wǎng)的普及,網(wǎng)上購物已逐漸成為消費(fèi)時(shí)尚,為了解消費(fèi)者對(duì)網(wǎng)上購物的滿意情況,某公司隨機(jī)對(duì)4500名網(wǎng)上購物消費(fèi)者進(jìn)行了調(diào)查(每名消費(fèi)者限選一種情況回答),統(tǒng)計(jì)結(jié)果如表:
滿意情況不滿意比較滿意滿意非常滿意
人數(shù)200n21001000
根據(jù)表中數(shù)據(jù),估計(jì)在網(wǎng)上購物的消費(fèi)者群體中對(duì)網(wǎng)上購物“比較滿意”或“滿意”的概率是( 。
A.$\frac{7}{15}$B.$\frac{2}{5}$C.$\frac{11}{15}$D.$\frac{13}{15}$

查看答案和解析>>

同步練習(xí)冊(cè)答案