19.已知命題p:-2<x<10,命題q:x≤1-a或x≥1+a,若非p是q的充分不必要條件,求a的取值范圍.

分析 命題q:x≤1-a或x≥1+a,可得¬p:1-a≤x≤1+a,(a≥0).根據(jù)非p是q的充分不必要條件,及其不等式的性質即可得出.

解答 解:命題p:-2<x<10,
命題q:x≤1-a或x≥1+a,可得¬p:1-a≤x≤1+a,(a≥0).
∵非p是q的充分不必要條件,
∴$\left\{\begin{array}{l}{-1≤1-a}\\{1+a≤10}\\{a≥0}\end{array}\right.$,解得0≤a≤2.
∴a的取值范圍是[0,2].

點評 本題考查了不等式的性質、簡易邏輯的判定,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知角∂的頂點在原點,始邊與x軸的正半軸重合,終邊經(jīng)過點$P(-3,\sqrt{3})$.
(1)求sin2∂-tan∂+$\frac{\sqrt{3}}{6}$的值;
(2)若函數(shù)f(x)=cos(x-α)cosα-sin(x-α)sinα,$\overrightarrow{a}$=(2cosx,1),$\overrightarrow$=(cosx,-1)求函數(shù)y=$\sqrt{3}$f($\frac{π}{2}$-2x)-$\overrightarrow{a}$•$\overrightarrow$-1在區(qū)間[0,$\frac{2π}{3}$]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.雙曲線9x2-16y2=144的漸近線方程是( 。
A.y=±$\frac{9}{16}$xB.y=±$\frac{3}{4}$xC.y=±$\frac{16}{9}$xD.y=±$\frac{4}{3}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若f(x)=$\left\{{\begin{array}{l}{sin\frac{πx}{6}(x≤0)}\\{1-2x(x>0)}\end{array}}$,則f(f(3))=( 。
A.1B.-1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若雙曲線$\frac{x^2}{4}-\frac{y^2}{9}$=1上一點P到左焦點的距離是3,則點P到右焦點的距離為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.給出下列四個命題,其中正確的命題有( 。﹤.
(1)函數(shù)y=sin2x+cos2x在x∈[0,$\frac{π}{2}$]上的單調遞增區(qū)間是[0,$\frac{π}{8}$];
(2)a1,a2,b1,b2均為非零實數(shù),集合A={x|a1x+b1>0},B={x|a2x+b2>0},則“$\frac{{a}_{1}}{{a}_{2}}$=$\frac{_{1}}{_{2}}$”是“A=B”的必要不充分條件
(3)若p∨q為真命題,則p∧q也為真命題
(4)命題?x∈R,x2+x+1<0的否定?x∈R,x2+x+1<0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.有下列命題:
①在函數(shù)y=cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)的圖象中,相鄰兩個對稱中心的距離為π;
②命題:“若a=0,則ab=0”的否命題是“若a=0,則ab≠0”;
③“a≠5且b≠-5”是“a+b≠0”的必要不充分條件;
④已知命題p:對任意的x∈R,都有sinx≤1,則¬p是:存在x0∈R,使得sinx0>1;
⑤命題“若0<a<1,則loga(a+1)>loga(1+$\frac{1}{a}$)”是真命題;
⑥在△ABC中,若3sinA+4cosB=6,4sinB+3cosA=1,則角C等于30°或150°.
其中所有真命題的序號是④⑤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知向量$\overrightarrow a=({-2,1}),\overrightarrow b=(1,m)$平行,則m=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,已知OPQ是半徑為1,圓心角為$\frac{π}{3}$的扇形,C是扇形弧上的動點,ABCD是扇形的內接矩形,記∠COP=α,
(1)求矩形ABCD的面積y關于角α的函數(shù)關系式y(tǒng)=f(α);
(2)求y=f(α)的單調遞增區(qū)間;
(3)問當角α取何值時,矩形ABCD的面積最大?并求出這個最大面積.

查看答案和解析>>

同步練習冊答案