3.下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A.y=log2(x+5)B.$y={({\frac{1}{3}})^x}$C.y=-$\sqrt{x+2}$D.y=$\frac{1}{x}$-x

分析 直接判斷函數(shù)的單調(diào)性即可.

解答 解:y=log2(x+5)在區(qū)間(0,+∞)上為增函數(shù),滿足題意.
$y={(\frac{1}{3})}^{x}$在區(qū)間(0,+∞)上為減函數(shù),不滿足題意.
y=-$\sqrt{x+2}$在區(qū)間(0,+∞)上為減函數(shù),不滿足題意.
y=$\frac{1}{x}$-x區(qū)間(0,+∞)上是減數(shù)函數(shù),不滿足題意.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性的判斷與應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.計(jì)算:
(1)(2$\frac{7}{9}$)0.5+0.5-2+(2$\frac{10}{27}$)${\;}^{-\frac{1}{3}}$-3π0+$\frac{37}{48}$
(2)lg$\frac{1}{2}$-lg$\frac{5}{8}$+lg12.5-log29•log278.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知菱形ABCD的對(duì)角線AC長(zhǎng)為1,則$\overrightarrow{AD}•\overrightarrow{AC}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x+$\frac{m}{x}$,且此函數(shù)圖象過點(diǎn)(1,5),
(1)求實(shí)數(shù)m的值,并判斷函數(shù)f(x)的奇偶性;
(2)用單調(diào)性的定義證明函數(shù)f(x)在[1,2]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別是a,b,c,已知b=$\sqrt{2}$c,sinA+sinC=$\sqrt{2}$sinB,則角A=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知四邊形ABCD為平行四邊形,點(diǎn)A的坐標(biāo)為(-1,2),點(diǎn)C在第二象限,$\overrightarrow{AB}=({2,2}),且\overrightarrow{AB}與\overrightarrow{AC}$的夾角為$\frac{π}{4},\overrightarrow{AB}•\overrightarrow{AC}$=2.
(I)求點(diǎn)D的坐標(biāo);
(II)當(dāng)m為何值時(shí),$\overrightarrow{AC}+m\overrightarrow{AB}與\overrightarrow{BC}$垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示不超過x的最大整數(shù)(如[-1.5]=-2,[0]=0,[2.3]=2),則[log2$\frac{1}{4}$]+[log2$\frac{1}{3}$]+[log21]+[log23]+[log24]的值為( 。
A.0B.-2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)y=x2m+1在區(qū)間(0,+∞)上是增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.記$\underset{\stackrel{k}{Ⅱ}}{n=1}$an為數(shù)列{an}的前k項(xiàng)積,已知正項(xiàng)等比數(shù)列{an}中,若a3,a7是方程x2-6x+2=0的兩根,則$\underset{\stackrel{9}{Ⅱ}}{n=1}$an=( 。
A.8$\sqrt{2}$B.16$\sqrt{2}$C.16D.32

查看答案和解析>>

同步練習(xí)冊(cè)答案