分析 運(yùn)用正弦定理,可得a+c=$\sqrt{2}$b,又b=$\sqrt{2}$c,即有a=c,再由余弦定理,計(jì)算cosA,即可得到所求A的值.
解答 解:由正弦定理,sinA+sinC=$\sqrt{2}$sinB,即為
a+c=$\sqrt{2}$b,又b=$\sqrt{2}$c,
即有a=2c-c=c,
由余弦定理可得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{2{c}^{2}+{c}^{2}-{c}^{2}}{2\sqrt{2}{c}^{2}}$=$\frac{\sqrt{2}}{2}$.
即有A=$\frac{π}{4}$.
故答案為:$\frac{π}{4}$.
點(diǎn)評(píng) 本題考查正弦定理和余弦定理的運(yùn)用,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0與{0}表示同一個(gè)集合 | |
B. | 由1,2,3組成的集合可表示為{1,2,3}或{3,2,1} | |
C. | 方程(x-1)2(x-2)=0的所有解的集合可表示為{1,1,2} | |
D. | 集合{x|4<x<5}是有限集 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -1 | C. | $\frac{1}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -8 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=log2(x+5) | B. | $y={({\frac{1}{3}})^x}$ | C. | y=-$\sqrt{x+2}$ | D. | y=$\frac{1}{x}$-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,$\frac{1}{2}$) | B. | [1,$\frac{3}{2}$]∪($\frac{7}{4}$,2] | C. | (-∞,$\frac{1}{2}$)∪[1,2] | D. | ($\frac{3}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com