12.表是某市從3月份中隨機(jī)抽取的10天空氣質(zhì)量指數(shù)(AQI)和“PM2.5”(直徑小于等于2.5微米的顆粒物)24小時(shí)平均濃度的數(shù)據(jù),空氣質(zhì)量指數(shù)(AQI)小于100表示空氣質(zhì)量?jī)?yōu)良.
日期編號(hào)A1A2A3A4A5A6A7A8A9A10
空氣質(zhì)量指數(shù)(AQI)1794098124291332414249589
PM2.5日均濃度(ug/m313558094801001903877066
(1)根據(jù)表數(shù)據(jù),估計(jì)該市當(dāng)月某日空氣質(zhì)量?jī)?yōu)良的概率;
(2)在表數(shù)據(jù)中、在表示空氣質(zhì)量?jī)?yōu)良的日期中,隨機(jī)抽取兩個(gè)對(duì)其當(dāng)天的數(shù)據(jù)作進(jìn)一步的分析,設(shè)事件M為“抽取的兩個(gè)日期中,當(dāng)天‘PM2.5’的24小時(shí)平均濃度小于75ug/m3”,求事件M發(fā)生的概率.

分析 (1)由表數(shù)據(jù)知,利用等可能事件概率的求法,即可估計(jì)該市當(dāng)月某日空氣質(zhì)量?jī)?yōu)良的概率;
(2)確定由(1)知10天中表示空氣質(zhì)量為優(yōu)良的天數(shù)為5,當(dāng)天“PM2.5”的24小時(shí)平均濃度不超過(guò)75ug/m3,有編號(hào)為A2、A9、A10,共3天,利用等可能事件概率的求法,求事件M發(fā)生的概率;

解答 解:(1)由上表數(shù)據(jù)知,10天中空氣質(zhì)量指數(shù)(AQI)小于100的日期編號(hào)為:
A2、A3、A5、A9、A10共5天,
故可估計(jì)該市當(dāng)月某日空氣質(zhì)量?jī)?yōu)良的概率P=$\frac{5}{10}$=$\frac{1}{2}$. 
(2)在表示空氣質(zhì)量為優(yōu)良的日期A2、A3、A5、A9、A10中隨機(jī)抽取兩個(gè)的所有可能的情況為:{ A2,A3},{ A2,A5},{ A2,A9},{ A2,A10},{ A3,A5},{ A3,A9},{ A3,A10},{ A5,A9},{ A5,A10},{ A9,A10},共10種,
兩個(gè)日期當(dāng)天“PM2.5”24小時(shí)平均濃度小于7575ug/m3,的有:{ A2,A9},{ A2,A10},
{ A9,A10},共3種; 
故事件M發(fā)生的概率P(M)=$\frac{3}{10}$.

點(diǎn)評(píng) 本題考查等可能事件概率的求法,考查利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知直角三角形的三邊長(zhǎng)都是整數(shù)且其面積與周長(zhǎng)在數(shù)值上相等,那么這樣的直角三角形有( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列命題中正確命題的個(gè)數(shù)是(  )
(1)cosα≠0是$α≠2kπ+\frac{π}{2}(k∈Z)$的充分必要條件
(2)f(x)=|sinx|+|cosx|,則f(x)最小正周期是π
(3)若將一組樣本數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,則樣本的方差不變
(4)設(shè)隨機(jī)變量ζ服從正態(tài)分布N(0,1),若P(ζ>1)=p,則$P(-1<ζ<0)=\frac{1}{2}-p$.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若(ax-l)6展開(kāi)式中x3的系數(shù)為20,則a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在正項(xiàng)等比數(shù)列{an}中,a2=3,a8=27,則該數(shù)列第5項(xiàng)a5為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且橢圓C上的點(diǎn)到右焦點(diǎn)F的距離的最大值為2$\sqrt{2}$+2.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)F且不與x軸垂直或重合的直線l與橢圓C交于M、N兩點(diǎn),問(wèn):x軸上是否存在點(diǎn)P,使得∠OPM=∠OPN?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.點(diǎn)到A(12,16)的距離等于它到點(diǎn)B(3,4)的距離的2倍,求該動(dòng)點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知定點(diǎn)A($\sqrt{2}$,1),動(dòng)點(diǎn)M(x,y)的橫、縱坐標(biāo)同時(shí)滿足三個(gè)條件:0≤x≤$\sqrt{2}$,y≤2,ax-y≤0,則$\overrightarrow{OA•}$$\overrightarrow{OM}$的最大值為4的充分不必要條件是( 。
A.a≥0B.1≤a≤$\sqrt{3}$C.a≤$\sqrt{2}$D.0≤a≤$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知集合A={x|x2+2x+m=0},集合B={-1,4},如果A∩B=A且A≠B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案