6.“幸福賬單,為你買單”這是某電視臺(tái)《幸幅賬單》欄目的口號(hào).每一位參加闖關(guān)的選手如果能成功通過所有關(guān)卡到達(dá)終點(diǎn),則所報(bào)賬單即確認(rèn),否則賬單取消.現(xiàn)有3名男生,3名女生分別參加這檔節(jié)目.已知3名男生能使賬單確認(rèn)的概率分別為$\frac{1}{4}$,$\frac{1}{5}$,$\frac{1}{6}$,3名女生能使賬單確認(rèn)的概率均為$\frac{1}{5}$.
(1)分別求3名男生中有1名,2名,3名能使賬單確認(rèn)的概率;
(2)求3名女生能使賬單確認(rèn)的人數(shù)X的分布列與數(shù)學(xué)期望.

分析 (1)利用互斥事件概率加法公式和相互獨(dú)立事件概率乘法公式能求出3名男生能分別求出3名男生中有1名,2名,3名能使賬單確認(rèn)的概率.
(2)由已知得X的可能取值為0,1,2,3,且X~B(3,$\frac{1}{5}$),由此能求出3名女生能使賬單確認(rèn)的人數(shù)X的分布列與數(shù)學(xué)期望.

解答 解:(1)∵3名男生能使賬單確認(rèn)的概率分別為$\frac{1}{4}$,$\frac{1}{5}$,$\frac{1}{6}$,
∴3名男生中有1名能使賬單確認(rèn)的概率:
p1=$\frac{1}{4}(1-\frac{1}{5})(1-\frac{1}{6})$+$(1-\frac{1}{4})•\frac{1}{5}•(1-\frac{1}{6})$+$(1-\frac{1}{4})(1-\frac{1}{5})•\frac{1}{6}$=$\frac{47}{120}$;
3名男生中有2名能使賬單確認(rèn)的概率:
P2=$\frac{1}{4}×\frac{1}{5}×(1-\frac{1}{6})$+$\frac{1}{4}×(1-\frac{1}{5})×\frac{1}{6}$+$(1-\frac{1}{4})×\frac{1}{5}×\frac{1}{6}$=$\frac{1}{10}$,
3名男生都能使賬單確認(rèn)的概率:
p3=$\frac{1}{4}×\frac{1}{5}×\frac{1}{6}$=$\frac{1}{120}$.
(2)由已知得X的可能取值為0,1,2,3,且X~B(3,$\frac{1}{5}$),
P(X=0)=${C}_{3}^{0}(\frac{4}{5})^{3}$=$\frac{64}{125}$,
P(X=1)=${C}_{3}^{1}•\frac{1}{5}(\frac{4}{5})^{2}$=$\frac{48}{125}$,
P(X=2)=${C}_{3}^{2}(\frac{1}{5})^{2}(\frac{4}{5})$=$\frac{12}{125}$,
P(X=3)=${C}_{3}^{3}(\frac{1}{5})^{3}$=$\frac{1}{125}$,
∴X的分布列為:

 X 0 1 2 3
 P $\frac{64}{125}$ $\frac{48}{125}$ $\frac{12}{125}$ $\frac{1}{125}$
EX=$0×\frac{64}{125}+1×\frac{48}{125}$+$2×\frac{12}{125}+3×\frac{1}{125}$=$\frac{3}{5}$.

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意二項(xiàng)分布的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.一個(gè)盒子里裝有標(biāo)號(hào)為1,2,3,…,5的5張標(biāo)簽,現(xiàn)隨機(jī)地從盒子里無放回地抽取兩張標(biāo)簽.記X為兩張標(biāo)簽上的數(shù)字之和.
(1)求X的分布列.
(2)求X的期望EX和方差DX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.三角形的一個(gè)內(nèi)角為60°是這個(gè)三角形三內(nèi)角成等差數(shù)列的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在平面直角坐標(biāo)系xOy中,設(shè)橢圓$\frac{{x}^{2}}{4}$+y2=1的所有內(nèi)接菱形構(gòu)成的集合為F.
(1)求F中菱形的最小面積.
(2)是否存在定圓與F中的菱形都相切?若存在,求出定圓的方程;若不存在,說明理由.
(3)當(dāng)菱形的一邊經(jīng)過橢圓的右焦點(diǎn)時(shí),求這條邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如果點(diǎn)A(-3,6)與點(diǎn)B關(guān)于點(diǎn)P(2,-1)對(duì)稱,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x,y>0,且x+y=1,則$\frac{1}{2x+1}$+$\frac{4}{2y+1}$的最小值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.不等式($\frac{1}{2}$-x)($\frac{1}{3}$+x)>0的解集為( 。
A.{x|-$\frac{1}{3}$<x<$\frac{1}{2}$}B.{x|x<-$\frac{1}{3}$或x>$\frac{1}{2}$}C.{x|-$\frac{1}{2}$<x<$\frac{1}{3}$}D.{x|x<-$\frac{1}{2}$或x>$\frac{1}{3}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)$\overrightarrow{a}$=(-2,-3),$\overrightarrow$=(6,-5).則$\overrightarrow{a}$$•\overrightarrow$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+2y≤8}\\{2x+y≤8}\\{x≥0}\\{y≥0}\end{array}\right.$ 則目標(biāo)函數(shù)z=6x+2y-1的最大值為( 。
A.17B.20C.21D.23

查看答案和解析>>

同步練習(xí)冊(cè)答案