17.已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足$f(\frac{x_1}{x_2})=f({x_1})-f({x_2})$,且當(dāng)x>1時(shí),f(x)<0.
(Ⅰ)求f(1)的值;
(Ⅱ)判斷f(x)的單調(diào)性并予以證明;
(Ⅲ)若f(3)=-1,解不等式f(x2)>-2.

分析 (1)由條件令x1=x2,則f(1)=0;(2)由單調(diào)性定義,設(shè)0<x2<x1,則$\frac{{x}_{1}}{{x}_{2}}$>1,由x>1時(shí),f(x)<0,即有f($\frac{{x}_{1}}{{x}_{2}}$)<0,即可求得單調(diào)性(3)關(guān)鍵函數(shù)的單調(diào)性結(jié)合f(x2)>f(9),得到關(guān)于x的不等式,解出即可.

解答 解:(1)令x1=x2>0,代入得f(1)=f(x1)-f(x1)=0,故f(1)=0.
(2)任取x1,x2∈(0,+∞),且x1>x2,則$\frac{x_1}{x_2}>1$,由于當(dāng)x>1時(shí),f(x)<0,
所以$f(\frac{x_1}{x_2})<0$,即f(x1)-f(x2)<0,因此f(x1)<f(x2).
所以函數(shù)f(x)在區(qū)間(0,+∞)上是單調(diào)遞減函數(shù).
(3)由$f(\frac{x_1}{x_2})=f({x_1})-f({x_2})$得$f(\frac{9}{3})=f(9)-f(3)$,而f(3)=-1,所以f(9)=-2.
由函數(shù)f(x)在區(qū)間(0,+∞)上是單調(diào)遞減函數(shù),且f(x2)>f(9),
得0<x2<9,∴-3<x<0或0<x<3,因此不等式的解集為(-3,0)∪(0,3).

點(diǎn)評(píng) 本題考查抽象函數(shù)及應(yīng)用,考查函數(shù)的單調(diào)性及其應(yīng)用,注意運(yùn)用定義,同時(shí)考查解決抽象函數(shù)的常用方法:賦值法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.不等式$|\begin{array}{l}{x}&{1}\\{3}&{x}\end{array}|$+2x>0的解集為{x|x<-3或x>1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.點(diǎn)A(0,2)是圓O:x2+y2=16內(nèi)定點(diǎn),B,C是這個(gè)圓上的兩動(dòng)點(diǎn),若BA⊥CA,求BC中點(diǎn)M的軌跡方程為x2+y2-2y-6=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)任意的a,b∈R都滿足:f(a•b)=af(b)+bf(a),若f(2)=2,Un=f(2n)(n∈N*
(1)求Ul,U2,U3的值.     
(2)求證:Un+1>Un

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,AB是圓O的直徑,AC是弦,∠BAC的平分線AD交圓O于點(diǎn)D,DE⊥AC,交AC的延長(zhǎng)線于點(diǎn)E,OE交AD于點(diǎn)F.
(1)求證:DE是圓O的切線;
(2)若∠CAB=60°,⊙O的半徑為2,EC=1,求DE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列對(duì)應(yīng)是從集合S到T的映射的是(  )
A.S={0,1,4,9},T={-3,-2,-1,0,1,2,3},對(duì)應(yīng)法則是開平方
B.S={0,1,2,5},T=$\{1,\frac{1}{2},\frac{1}{5}\}$,對(duì)應(yīng)法則是取倒數(shù)
C.S=N,T={-1,1},對(duì)應(yīng)法則是n→(-1)n,n∈S
D.S={x|x∈R},T={y|y∈R},對(duì)應(yīng)法則是x→y=$\frac{1+x}{1-x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知$\overrightarrow{AB}$=(-1,-2),$\overrightarrow{BC}$=(-3,-4),則$\overrightarrow{CA}$=(  )
A.(4,6)B.(-4,-6)C.(2,2)D.(-2,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.$\frac{5}{3}$B.$\frac{2}{3}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.四個(gè)關(guān)系①0∈{0};②∅={0};③{0,1}⊆{(0,1)};④{(a,b)}={(b,a)}中正確的個(gè)數(shù)有(  )
A.0B.1C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案