8.將函數(shù)y=sin(2x+$\frac{π}{6}$)的圖象向右平移φ(0<φ<$\frac{π}{2}$)個單位后,得到函數(shù)f(x)的圖象,若函數(shù)f(x)是偶函數(shù),則φ的值等于$\frac{π}{3}$.

分析 由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象的對稱性,求得φ的值.

解答 解:將函數(shù)y=sin(2x+$\frac{π}{6}$)的圖象向右平移φ(0<φ<$\frac{π}{2}$)個單位后,得到函數(shù)f(x)=sin[2(x-φ)+$\frac{π}{6}$]=sin(2x-2φ+$\frac{π}{6}$)的圖象,
若函數(shù)f(x)是偶函數(shù),則-2φ+$\frac{π}{6}$=kπ+$\frac{π}{2}$,即 φ=-$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,∴φ=$\frac{π}{3}$,
故答案為:$\frac{π}{3}$.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列敘述正確的是( 。
A.方程x2-2x+1=0的根構(gòu)成的集合為{1,1}
B.{x∈R|x2+1=0}={x∈R|$\left\{\begin{array}{l}{2x+4>0}\\{x+3<0}\end{array}\right.$}
C.集合M={(x,y)|x+y=5且2x-y=0}表示的集合是{2,3}
D.集合{1,2,3}與集合{3,2,1}是不同的集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)α∈R,f(x)=a-$\frac{2}{{2}^{x}+1}$(x∈R).
(1)證明對任意實數(shù)a,f(x)為增函數(shù).
(2)試確定a的值,使f(x)≤0恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)y=f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(xy)=f(x)+f(y),f($\frac{1}{3}$)=1.
(1)求f(1)的值;
(2)若存在實數(shù)m,使得f(m)=2,求m的值;
(3)若f(x-2)>2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知sinα=$\frac{1}{4}$,α∈($\frac{π}{2}$,π),則tanα=-$\frac{\sqrt{15}}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=mx-sinx-cosx,g(x)=(ax-1)cosx-2sinx(a>0).
(Ⅰ)若函數(shù)y=f(x)在(-∞,+∞)上是單調(diào)遞減函數(shù),求實數(shù)m的最大值;
(Ⅱ)若m=1,且對于任意x∈[0,$\frac{π}{2}$],都有不等式f(x)≥g(x)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知P={x|x2-$\frac{3}{2}$x+$\frac{1}{2}$≤0},S={x|x2-(2a+1)x+a(a+1)≤0}
(1)否存在實數(shù)a,使x∈P是x∈S的充要條件,若存在,求出a的范圍;
(2)是否存在實數(shù)a,使x∈P是x∈S的必要不充分條件,若存在,求出a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.用列舉法表示集合{x∈Z|-2<x<4}={-1,0,1,2,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,斜率k(k≥0)的直線l過橢圓中心O且與橢圓的兩個交點從左至右為E,G,與直線l垂直的直線m與橢圓的兩個交點,從上至下為F,H,當(dāng)四邊形EFGH為正方形時面積為$\frac{8}{3}$.
(1)求橢圓的方程;
(2)求四邊形EFGH的面積S的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案