4.在區(qū)間[-$\frac{π}{2},\frac{π}{2}$]上隨機(jī)取一個數(shù)記為x,則使得sinx≥$\frac{1}{2}$的概率為$\frac{1}{3}$.

分析 在x∈[-$\frac{π}{2},\frac{π}{2}$]時解sinx≥$\frac{1}{2}$,由幾何概型的概率公式可得.

解答 解:在區(qū)間[-$\frac{π}{2},\frac{π}{2}$]上隨機(jī)取一個數(shù)記為x,
則x的基本事件空間為長度為$\frac{π}{2}$-(-$\frac{π}{2}$)=π的線段,
當(dāng)x∈[-$\frac{π}{2},\frac{π}{2}$]時解sinx≥$\frac{1}{2}$可得x∈[$\frac{π}{6}$,$\frac{π}{2}$],
∴所求概率P=$\frac{\frac{π}{2}-\frac{π}{6}}{π}$=$\frac{1}{3}$
故答案為:$\frac{1}{3}$.

點評 本題考查幾何概型,涉及三角不等式的解法,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知U=R,集合A={x|0<x<4},B={x|1<x<7},求A∩B,A∪B,∁UA,∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1-lo{g}_{2}(2-x)(x<2)}\\{{2}^{1-x}+\frac{3}{2}(x≥2)}\end{array}\right.$,則f(f(3))=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在同一平面直角坐標(biāo)系中,曲線C:x2+y2=1經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}\right.$后,變?yōu)榍C′.
(1)求曲線C′的方程;
(2)在曲線C′上求一點P,使點P到直線x+2y-8=0的距離最小,求出最小值并寫出此時點P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,角A,B,C所對的邊長分別為a,b,c,已知a-b=2,c=4,sinA=2sinB,則cosB=$\frac{7}{8}$,sin(2A-B)=$\frac{7\sqrt{15}}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)全集U=R,若集合A={x|-1≤x≤5},B={x|y=lg(x-1)},則∁U(A∩B)為(  )
A.{1<x≤5}B.{x≤-1或x>5}C.{x≤1或x>5}D.{1≤x<5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)方程2x=|log2(-x)|的兩個根分別為x1,x2,則( 。
A.x1x2<0B.0<x1x2<1C.x1x2=1D.x1x2>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.f(x)是定義在(-3,3)上的奇函數(shù),且單調(diào)遞減,若f(2-a)+f(4-3a)<0,則a的取值范圍為$({\frac{1}{3},\frac{3}{2}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在下列給出的命題中,所有正確命題的個數(shù)為( 。
①函數(shù)y=2x3-3x+1的圖象關(guān)于點(0,1)成中心對稱;
②對?x,y∈R,若x+y≠0,則x≠1或y≠-1;
③若實數(shù)x,y滿足x2+y2=1,則$\frac{y}{x+2}$的最大值為$\frac{\sqrt{3}}{3}$;
④若△ABC為銳角三角形,則sinA<cosB.
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案