A. | y2=8x | B. | y2=4x | C. | y2=2x | D. | ${y^2}=4\sqrt{3}x$ |
分析 根據(jù)題意,設(shè)出雙曲線C的方程,畫出圖形,結(jié)合圖形求出拋物線上的點A坐標(biāo),即可求出拋物線方程.
解答 解:∵雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為$\sqrt{2}$,
∴雙曲線C為等軸雙曲線,即a=b;
∴雙曲線的漸近線方程為y=±x;
又∵雙曲線的漸近線與拋物線y2=2px交于A,B兩點;
則設(shè)點A(x0,x0)(x0>0),
又∵△OAB的面積為$\frac{1}{2}$x0•2x0=4,
∴x0=2,
將(2,2)代入拋物線方程y2=2px
解得p=1,
∴拋物線的方程為y2=2x.
故選:C.
點評 本題考查了雙曲線與拋物線的定義、幾何性質(zhì)的應(yīng)用問題,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{20}-\frac{{y}^{2}}{5}=1$ | B. | $\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$ | C. | $\frac{{x}^{2}}{80}-\frac{{y}^{2}}{20}=1$ | D. | $\frac{{x}^{2}}{20}-\frac{{y}^{2}}{80}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b∈(0,$\frac{1}{2}$] | B. | b∈[0,$\frac{1}{2}$) | C. | b∈(-∞,$\frac{1}{2}$] | D. | b∈(-∞,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com