A. | 4 | B. | $2\sqrt{3}$ | C. | $2\sqrt{6}$ | D. | $\sqrt{10}$ |
分析 根據(jù)圓錐的性質(zhì),建立坐標(biāo)系,確定拋物線的方程,計(jì)算出EF的長度,結(jié)合直角三角形的關(guān)系進(jìn)行求解即可.
解答 解:如圖1所示,過點(diǎn)E作EH⊥AB,垂足為H.
∵E是母線PB的中點(diǎn),圓錐的底面半徑和高均為4,
∴OH=EH=2.
∴OE=2$\sqrt{2}$.
在平面CED內(nèi)建立直角坐標(biāo)系如圖2.
設(shè)拋物線的方程為y2=2px(p>0),F(xiàn)為拋物線的焦點(diǎn).
C(2$\sqrt{2}$,4),
∴16=2p•(2$\sqrt{2}$),解得p=2$\sqrt{2}$.
F($\sqrt{2}$,0).
即OF=$\sqrt{2}$,EF=$\sqrt{2}$,
∵PB=4$\sqrt{2}$,PE=2$\sqrt{2}$,
∴該拋物線的焦點(diǎn)到圓錐頂點(diǎn)P的距離為$\sqrt{E{F}^{2}+P{E}^{2}}$=$\sqrt{2+8}$=$\sqrt{10}$,
故選:D.
點(diǎn)評 本題考查了圓錐的性質(zhì)、拋物線的標(biāo)準(zhǔn)方程,考查了轉(zhuǎn)變角度解決問題的能力,考查了推理能力與計(jì)算能力,建立平面坐標(biāo)系,求出拋物線的方程以及焦點(diǎn)坐標(biāo)是解決本題的關(guān)鍵.,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
跟從別人闖紅燈 | 從不闖紅燈 | 帶頭闖紅燈 | |
男生 | 800 | 450 | 200 |
女生 | 100 | 150 | 300 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 46 | B. | 23 | C. | 954 | D. | 317 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{{4\sqrt{2}}}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{{8\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com