4.復(fù)數(shù)z滿足(z-1)(1+i)=2i,則|z|=$\sqrt{5}$.

分析 變形已知式子可得z=$\frac{2i}{1+i}$+1,化簡(jiǎn)代入模長(zhǎng)公式計(jì)算可得.

解答 解:∵復(fù)數(shù)z滿足(z-1)(1+i)=2i,
∴z=$\frac{2i}{1+i}$+1=$\frac{2i(1-i)}{(1+i)(1-i)}$+1=2+i,
∴|z|=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,
故答案為:$\sqrt{5}$.

點(diǎn)評(píng) 本題考查復(fù)數(shù)求模,由復(fù)數(shù)的運(yùn)算求出復(fù)數(shù)z是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.計(jì)算
(1)${∫}_{-3}^{3}$($\sqrt{9-{x}^{2}}$-x3)dx的值.
(2)${∫}_{-3}^{3}$(|x+1|+|x-1|-4)dx;
(3)${∫}_{a}^$$\sqrt{(x-a)(b-x)}$dx(b>a)
(4)${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$(sin3xcosx)dx;
(5)${∫}_{1}^{2}$$\frac{1}{x(x+1)}$dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在等差數(shù)列{an}中,a1=81,公差d=-7,則前( 。╉(xiàng)和最大.
A.13B.12C.11D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足a2=bc+b2,C=75°,則B為(  )
A.35°B.45°C.65°D.25°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知集合M={m2,5},N={1,4},則“m=2”是“M∩N={4}”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.復(fù)數(shù) $z=\frac{{-2\sqrt{3}i}}{{3+\sqrt{3}i}}$(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知集合A={x|-2<x<5},B={x|1<x<8}.分別求A∪B,(∁RA)∪B,∁R(A∩B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知雙曲線在左、右焦點(diǎn)分別為F1、F2,在左支上過(guò)F1的弦AB的長(zhǎng)為5,若2a=8,那么△ABF2的周長(zhǎng)是( 。
A.16B.18C.21D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=log3(9x)•log3(3x),且$\frac{1}{9}$≤x≤9.
(1)求f(3)的值;
(2)求函數(shù)f(x)的最大值與最小值及與之對(duì)應(yīng)的x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案