分析 (I)設(shè)等差數(shù)列{an}的公差為d,由于a1,a2,a5成等比數(shù)列,且該數(shù)列的前10項(xiàng)和為100,可得${a}_{2}^{2}$=a1a5,即$({a}_{1}+d)^{2}$=a1(a1+4d),10a1+$\frac{10×9}{2}$d=100,聯(lián)立解得a1,d,即可得出an.又滿足Sn=a${\;}_{_{n}}$,n∈N*,可得Sn=2bn-1,利用遞推關(guān)系可得:bn.
(II)$\frac{1+{a}_{n}}{4_{n}}$=$\frac{n}{{2}^{n}}$.再利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式,數(shù)列的單調(diào)性即可得出.
解答 解:(I)設(shè)等差數(shù)列{an}的公差為d,∵a1,a2,a5成等比數(shù)列,且該數(shù)列的前10項(xiàng)和為100,
∴${a}_{2}^{2}$=a1a5,即$({a}_{1}+d)^{2}$=a1(a1+4d),10a1+$\frac{10×9}{2}$d=100,聯(lián)立解得a1=1,d=2,∴an=1+2(n-1)=2n-1.
又滿足Sn=a${\;}_{_{n}}$,n∈N*,∴Sn=2bn-1,當(dāng)n=1時(shí),b1=2b1-1,解得b1=1.
當(dāng)n≥2時(shí),bn=Sn-Sn-1=2bn-1-(2bn-1-1),化為:bn=2bn-1,
∴數(shù)列{bn}是等比數(shù)列,首項(xiàng)為1,公比為2.
∴bn=2n-1.
(II)$\frac{1+{a}_{n}}{4_{n}}$=$\frac{1+2n-1}{4×{2}^{n-1}}$=$\frac{n}{{2}^{n}}$.
∴前n項(xiàng)和為Tn=$\frac{1}{2}+\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$=1-$\frac{2+n}{{2}^{n+1}}$,
∴Tn=2-$\frac{2+n}{{2}^{n}}$.
n≥2時(shí),Tn-Tn-1=$\frac{n}{{2}^{n}}$>0.
∴數(shù)列{Tn}單調(diào)遞增,
∴$\frac{1}{2}≤$Tn<2.
點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“錯(cuò)位相減法”、遞推關(guān)系的應(yīng)用、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | $\sqrt{5}$ | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 4 | C. | 4$\sqrt{2}$ | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,x2+2x+2≥0,真命題 | B. | ?x∈R,x2+2x+2<0,假命題 | ||
C. | ?x∉R,x2+2x+2≥0,假命題 | D. | ?x∈R,x2+2x+2≥0,真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com