2.函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{-lo{g}_{2}(x+1),x>1}\end{array}\right.$且f(a)=-3,則f(5-a)=( 。
A.-$\frac{7}{4}$B.-$\frac{5}{4}$C.-$\frac{3}{4}$D.-$\frac{1}{4}$

分析 利用導(dǎo)函數(shù)的解析式,列出方程求解即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{-lo{g}_{2}(x+1),x>1}\end{array}\right.$且f(a)=-3,
當(dāng)a≤1時(shí),2a-2=-3,無解.
當(dāng)a>1時(shí),-log2(a+1)=-3,解得a=7.
f(5-a)=f(-2)=2-2-2=$-\frac{7}{4}$.
故選:A.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的首項(xiàng)a1=1,且an+1=2an+1(n∈N*).
(1)證明數(shù)列{an+1}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)記bn=$\frac{n}{{a}_{n}+1}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖所示:一張正方形狀的黑色硬質(zhì)板,剪去兩個(gè)一樣的小矩形得到一個(gè)“E”形的圖形,設(shè)小矩形的長、寬分別為a,b(2≤a≤10),剪去部分的面積為8,則$\frac{1}{b+1}$+$\frac{9}{a+9}$的最大值為( 。
A.1B.$\frac{11}{10}$C.$\frac{6}{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在銳角△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且acosB+bcosA=$\frac{{3\sqrt{5}}}{5}$csinC.
(1)求cosC;
(2)若a=6,△ABC的面積為8$\sqrt{5}$,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=ax+b-1(a>0,b≠1)的定義域和值域都是[-1,0],則a+b=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.用反證法證明“a+b$\sqrt{2}$(a、b∈Z)是無理數(shù)”時(shí),假設(shè)正確的是(  )
A.假設(shè)$\sqrt{2}$是有理數(shù)B.假設(shè)b$\sqrt{2}$(b∈Z)是有理數(shù)
C.假設(shè)a+$\sqrt{2}$(a∈Z)是有理數(shù)D.假設(shè)a+b$\sqrt{2}$(a、b∈Z)是有理數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)復(fù)數(shù)z=x+(y-1)i(x,y∈R),若|z|≤1,則y≤x的概率為$\frac{1}{4}-\frac{1}{2π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.以點(diǎn)P(0,2)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程是x2=8y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}的首項(xiàng)a1=2,數(shù)列{bn}為等比數(shù)列,且${b_n}=\frac{{{a_{n+1}}}}{a_n}$,若b10b11=2,則a21=( 。
A.29B.210C.211D.212

查看答案和解析>>

同步練習(xí)冊答案