14.已知tanα=$\frac{1}{3}$,則sin2α+cos2α=$\frac{3}{2}$.

分析 利用已知條件,求出正弦與余弦的關(guān)系,利用二倍角與同角三角函數(shù)的基本關(guān)系式,直接求解表達(dá)式的值.

解答 解:因?yàn)閠anα=1,
所以sin2α+cos2α=2cosαsinα+cos2α=$\frac{2sinαcosα+co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2tanα+1}{ta{n}^{2}α+1}$=$\frac{2+1}{1+1}$=$\frac{3}{2}$,
故答案為:$\frac{3}{2}$.

點(diǎn)評(píng) 本題考查二倍角的余弦,同角三角函數(shù)間的基本關(guān)系的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.從圓C:(x-1)2+(y-1)2=1,外一點(diǎn)P(2,3)向該圓引切線,切點(diǎn)為A,B.
(1)求過(guò)點(diǎn)A,B,P三點(diǎn)的圓的方程;
(2)直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1)求函數(shù)y=2sin(2x+$\frac{π}{6}$)的單調(diào)遞增區(qū)間.
(2)求函數(shù)y=2sin($\frac{π}{6}$-2x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.A,B,O是平面內(nèi)不共線的三個(gè)定點(diǎn),$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,點(diǎn)P關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為Q,點(diǎn)Q關(guān)于點(diǎn)B的對(duì)稱點(diǎn)為R,則$\overrightarrow{PR}$等于( 。
A.$\overrightarrow{a}$-$\overrightarrow$B.2($\overrightarrow$-$\overrightarrow{a}$)C.2($\overrightarrow{a}$-$\overrightarrow$)D.$\overrightarrow$-$\overrightarrow{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=2cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$sin2x+sinxcosx.
(I)求函數(shù)f(x)的遞增區(qū)間;
(2)求函數(shù)f(x)的對(duì)稱軸和對(duì)稱中心;
(3)若x∈[-$\frac{π}{4}$,$\frac{π}{4}$],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知在△ABC中,邊a=$\sqrt{2}$,邊c=2,角A=30°,求邊b的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.化簡(jiǎn):$\frac{sin(π+α)cos(2π+α)}{sin(-α-π)cos(-π+α)}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.一個(gè)單位共有職工300人,其中男職工180人,女職工120人.用分層抽樣的方法從全體職工中抽取一個(gè)容量為50的樣本,應(yīng)抽取女職工20人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知p:0≤m≤3,q:(m-2)(m-4)≤0,若p∧q為假,p∨q為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案