20.已知數(shù)列{an}滿足:?m,n∈N*都有am•an=am+n,且a1=2.記數(shù)列${b_n}=\frac{{{a_n}^2+{a_{2n}}}}{{{a_{2n-1}}}}$的前n項和為Sn,則Sn=4n.

分析 在已知遞推式中,取m=1可得數(shù)列{an}是以2為首項,以2為公比的等比數(shù)列,求出等比數(shù)列的通項公式,代入${b_n}=\frac{{{a_n}^2+{a_{2n}}}}{{{a_{2n-1}}}}$后得答案.

解答 解:令m=1,則由am•an=am+n,得
ana1=an+1,即$\frac{{a}_{n+1}}{{a}_{n}}={a}_{1}=2$,
∴數(shù)列{an}是以2為首項,以2為公比的等比數(shù)列,
則${a}_{n}={2}^{n}$,
∴${b_n}=\frac{{{a_n}^2+{a_{2n}}}}{{{a_{2n-1}}}}$=$\frac{{2}^{2n}+{2}^{2n}}{{2}^{2n-1}}=\frac{{2}^{2n+1}}{{2}^{2n-1}}=4$,
∴數(shù)列${b_n}=\frac{{{a_n}^2+{a_{2n}}}}{{{a_{2n-1}}}}$的前n項和為Sn=4n.
故答案為:4n.

點(diǎn)評 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.己知點(diǎn)A,B是函數(shù)y=2|x|(x∈[-1,1])圖象上的兩個動點(diǎn),AB∥x軸,點(diǎn)B在y軸的右側(cè),點(diǎn)M(1,m)(m>2)是線段BC的中點(diǎn).
(1)設(shè)點(diǎn)B的橫坐標(biāo)為a,△ABC的面積為S,求S關(guān)于a的函數(shù)解析式S=f(a);
(2)若(1)中的f(a)滿足f(a)≤$\frac{{m}^{2}}{6}$-2mk-1對所有a∈(0,1],m∈(4,+∞)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)中最小值為4的是( 。
A.$y=x+\frac{4}{x}$B.y=3x+4•3-x
C.$y=sinx+\frac{4}{sinx}$ (0<x<π)D.y=lgx+4logx10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點(diǎn)(n,$\frac{{a}_{n}}{n}$)在二次函數(shù)f(x)=x2-10x+32的圖象上,若存在正整數(shù)k,當(dāng)任意n>k(k∈N*)時,恒有an>ak,則k的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{y≤1}\\{x+y≥0}\\{x-y-2≤0}\end{array}\right.$,則z=2x-y的最大值為( 。
A.4B.5C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.變量x,y滿足$\left\{{\begin{array}{l}{3x-y-2≥0}\\{x+2y-3≥0}\\{4x+y-12≤0}\end{array}}\right.$,則(x-3)2+(y-3)2的范圍是[$\frac{9}{17},9$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,兩直角邊和斜邊分別為a,b,c,若a+b=cx,試確定實(shí)數(shù)x的取值范圍( 。
A.$({1,\sqrt{2}}]$B.$({0,\sqrt{2}}]$C.$[{\sqrt{2},2})$D.$[{\sqrt{2},\sqrt{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(θ)=12cosθ+5sinθ(θ∈[0,2π))在θ=θ0處取得最小值,則點(diǎn)M(cosθ0,sinθ0)關(guān)于坐標(biāo)原點(diǎn)對稱的點(diǎn)坐標(biāo)是($\frac{12}{13}$,$\frac{5}{13}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若a,b,p(a≠0,b≠0,p>0)分別表示同一直線的橫截距、縱截距及原點(diǎn)到直線的距離,則下列關(guān)系式成立的是(  )
A.$\frac{1}{{a}^{2}}$+$\frac{1}{^{2}}$=$\frac{1}{{p}^{2}}$B.$\frac{1}{{a}^{2}}$-$\frac{1}{^{2}}$=$\frac{1}{{p}^{2}}$C.$\frac{1}{{a}^{2}}$+$\frac{1}{{p}^{2}}$=$\frac{1}{^{2}}$D.$\frac{1}{{a}^{2}{p}^{2}}$=$\frac{1}{^{2}}$

查看答案和解析>>

同步練習(xí)冊答案