A. | $({1,\sqrt{2}}]$ | B. | $({0,\sqrt{2}}]$ | C. | $[{\sqrt{2},2})$ | D. | $[{\sqrt{2},\sqrt{3}}]$ |
分析 由a+b=cx得,x=$\frac{a+b}{c}$,由正弦定理得$\frac{a+b}{c}$=$\sqrt{2}$sin(A+45°),由此能確定實(shí)數(shù)x的取值范圍.
解答 解:由a+b=cx得,x=$\frac{a+b}{c}$,
由題意得在△ABC中,∠C=90°,則∠A+∠B=90°,
由正弦定理得:$\frac{a+b}{c}$=$\frac{sinA+sinB}{sinC}$=$\frac{sinA+sin(90°-A)}{sin90°}$
=sinA+cosA=$\sqrt{2}$sin(A+45°),
由A∈(0,90°)得,A+45°∈(45°,135°),
所以sin(A+45°)∈($\frac{\sqrt{2}}{2}$,1],
即$\sqrt{2}$sin(A+45°)∈(1,$\sqrt{2}$],
∴$\frac{a+b}{c}$∈(1,$\sqrt{2}$],
∴x=$\frac{a+b}{c}$∈(1,$\sqrt{2}$].
故選:A.
點(diǎn)評 本題考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意正弦定理、三角函數(shù)性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2sin2x | B. | 2sin2x | C. | 2cos(2x-$\frac{π}{6}$) | D. | 2sin(2x-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [4,+∞) | B. | (4,+∞) | C. | (-∞,4] | D. | (-∞,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{7}}{4}$ | B. | -$\frac{\sqrt{7}}{4}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | -$\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com