11.已知圓C的圓心坐標(biāo)為(0,1),且與x軸相交的弦長為4,直線l:mx-y+1-m=0.
(Ⅰ)證明:對(duì)任意實(shí)數(shù)m,直線l與定圓C總有兩個(gè)交點(diǎn);
(Ⅱ)設(shè)直線l與圓C交于A,B兩點(diǎn),定點(diǎn)P(1,1)滿足2$\overrightarrow{AP}$=$\overrightarrow{PB}$,求此時(shí)直線l的方程.

分析 (1)求出圓C的方程,根據(jù)直線L:mx-y+1-m=0 過定點(diǎn)P(1,1),再根據(jù)點(diǎn)P在圓C:x2+(y-1)2=5的內(nèi)部,可得直線L與圓C總有兩個(gè)交點(diǎn).
(2)設(shè)點(diǎn)A(x1,mx1-m+1),點(diǎn)B(x2,mx2-m+1 ),由題意2$\overrightarrow{AP}$=$\overrightarrow{PB}$,可得2x1+x2=3. ①再把直線方程 y-1=m(x-1)代入圓C,化簡可得x1+x2=$\frac{2{m}^{2}}{1+{m}^{2}}$ ②,由①②解得點(diǎn)A的坐標(biāo),把點(diǎn)A的坐標(biāo)代入圓C的方程求得m的值,從而求得直線l的方程.

解答 (1)證明:∵圓C的圓心坐標(biāo)為(0,1),且與x軸相交的弦長為4,
∴r=$\sqrt{5}$,
∴圓C:x2+(y-1)2=5
直線L:mx-y+1-m=0 即 y-1=m(x-1),故直線過定點(diǎn)P(1,1),
而12+(1-1)2=1<5,故點(diǎn)P在圓C:x2+(y-1)2=5的內(nèi)部,故直線L與圓C總有兩個(gè)交點(diǎn).
(2)解:設(shè)點(diǎn)A(x1,mx1-m+1),點(diǎn)B(x2,mx2-m+1 ),
由題意2$\overrightarrow{AP}$=$\overrightarrow{PB}$,可得 2(1-x1,-mx1+m )=(x2-1,mx2-m ),
∴2-2x1=x2-1,即 2x1+x2=3. ①
再把直線方程 y-1=m(x-1)代入圓C:x2+(y-1)2=5,化簡可得 (1+m2)x2-2m2x+m2-5=0,
由根與系數(shù)的關(guān)系可得x1+x2=$\frac{2{m}^{2}}{1+{m}^{2}}$ ②.
由①②解得 x1=$\frac{3+{m}^{2}}{1+{m}^{2}}$,故點(diǎn)A的坐標(biāo)為 ($\frac{3+{m}^{2}}{1+{m}^{2}}$,$\frac{1+2m+{m}^{2}}{1+{m}^{2}}$).
把點(diǎn)A的坐標(biāo)代入圓C的方程可得 m2=1,故 m=±1,
故直線l的方程為 x-y=0,或x+y-2=0.

點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式,弦長公式的應(yīng)用,兩個(gè)向量共線的性質(zhì),兩個(gè)向量坐標(biāo)形式的運(yùn)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,Sn=2an+4n(n=1,2,3,…)
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{4n}{4-{a}_{n}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知:關(guān)于x的不等式x2+ax+b<0的解集為(1,2).求:關(guān)于x的不等式bx2+ax+1>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.將下列三角函數(shù)化為0°~45°內(nèi)的角的三角函數(shù).
(1)sin66°;
(2)cos74°;
(3)cos118°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)f(x)=2sin(ωx),其中ω>0,若函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{2π}{3}$]上是增函數(shù),則ω的取值范圍是(0,$\frac{3}{4}$ ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知長方體ABCD-A1B1C1D1的對(duì)稱中心在坐標(biāo)原點(diǎn)為O,交于同一頂點(diǎn)的三個(gè)面分別平行于三個(gè)坐標(biāo)平面,其中頂點(diǎn)A(-2,-3,-1),求其他7個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖所示,在正方形紙片ABCD中,AC與BD相交于點(diǎn)O,剪去△AOB,將剩余部分沿OC、OD折疊,使OA、OB重合,則在以A(B)、C、D、O為頂點(diǎn)的四面體中,二面角O-AD-C的余弦值為( 。
A.$\frac{\sqrt{6}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知?x∈(0,+∞),[(m-1)x-1](x2-mx-1)≥0恒成立,則m的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個(gè)圓錐的軸截面為正三角形,其邊長為a,則其表面積為(  )
A.$\frac{5}{4}{a^2}$πB.a2πC.$\frac{3}{4}{a^2}$πD.$\frac{1}{4}{a^2}$π

查看答案和解析>>

同步練習(xí)冊(cè)答案