分析 (1)將已知等式移項變形并利用兩角和與差的正弦函數(shù)公式化簡,整理后根據(jù)sinB不為0,得出cosA的值,由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出A的度數(shù).
(2)由條件利用兩個向量數(shù)量積的定義求得AB•AC=40,再利用余弦定理、基本不等式,求得|$\overrightarrow{BC}$|的最小值.
解答 解:(1)原式可化為:sinB=sin(A+B)-sin(A-B)
=sinAcosB+cosAsinB-sinAcosB+cosAsinB=2cosAsinB,
∵B∈(0,π),∴sinB>0,
∴cosA=$\frac{1}{2}$,∴∠A=60°.
(2)∵$\overrightarrow{AB}$•$\overrightarrow{AC}$=20,∴AB•AC•cos∠A=20,AB•AC=40.
則|$\overrightarrow{BC}$|=BC=$\sqrt{{AB}^{2}{+AC}^{2}-2AB•AC•cos60°}$≥$\sqrt{2AB•AC-AB•AC}$=$\sqrt{AB•AC}$=2$\sqrt{10}$,當(dāng)且僅當(dāng)AB=AC時,取等號,
即△ABC為等邊三角形時,|$\overrightarrow{BC}$|取得最小值為2$\sqrt{10}$.
點評 此題考查了兩角和與差的正弦函數(shù)公式、平面向量的數(shù)量積運算法則,以及余弦定理、基本不等式的應(yīng)用,熟練掌握公式及法則是解本題的關(guān)鍵,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{7}$ | B. | $\frac{2\sqrt{6}}{7}$ | C. | $\frac{29}{35}$ | D. | -$\frac{8\sqrt{6}}{35}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等腰三角形 | B. | 直角三角形 | ||
C. | 等腰直角三角形 | D. | 等腰三角形或直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com