分析 由直線過點可得正數(shù)ab滿足$\frac{2}{a}+\frac{1}$=1,整體代入可得3a+b=(3a+b)($\frac{2}{a}+\frac{1}$)=7+$\frac{2b}{a}$+$\frac{3a}$,由基本不等式可得.
解答 解:∵直線$\frac{x}{a}+\frac{y}=1({a>0,b>0})$過點(2,1),
∴$\frac{2}{a}+\frac{1}$=1,故3a+b=(3a+b)($\frac{2}{a}+\frac{1}$)
=7+$\frac{2b}{a}$+$\frac{3a}$≥7+2$\sqrt{\frac{2b}{a}•\frac{3a}}$=7+2$\sqrt{6}$,
當且僅當$\frac{2b}{a}$=$\frac{3a}$即$\sqrt{2}$b=$\sqrt{3}$a時取等號,
結(jié)合$\frac{2}{a}+\frac{1}$=1可解得a=$\frac{6+\sqrt{6}}{3}$且b=$\sqrt{6}$+1,
故答案為:7+2$\sqrt{6}$.
點評 本題考查基本不等式求最值,整體代入并變形為可用基本不等式的形式是解決問題的關(guān)鍵,屬基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7}{8}$ cm3 | B. | $\frac{2}{3}$ cm3 | C. | $\frac{5}{6}$ cm3 | D. | $\frac{1}{2}$ cm3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4π | B. | 12π | C. | 16π | D. | 48π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com