19.如圖,若P為平行四邊形ABCD所在平面外一點,點H為PC上的點,且$\frac{PH}{HC}$=$\frac{1}{2}$,點G在AH上,且$\frac{AG}{AH}$=m,若G,B,P,D四點共面,求m的值.

分析 若G,B,P,D四點共面,則G即為AH與平面PBD的交點,連接AC,BD交于點O,連接PO,則G即為PO與AH的交點,取HC的中點E,連接OE,結(jié)合三角形的中位線定理,可得答案.

解答 解:如下圖所示:

若G,B,P,D四點共面,
則G即為AH與平面PBD的交點,
連接AC,BD交于點O,連接PO,
則G即為PO與AH的交點,如下圖所示:

在截面PAC中,O為AC的中點,H為PC的三等分點,取HC的中點E,連接OE,
則OE=$\frac{1}{2}$AH=2GH,
故GH=$\frac{1}{4}$AH,
即AG=$\frac{3}{4}$AH,
故m=$\frac{3}{4}$.

點評 本題考查的知識點是四點共面問題,將空間問題轉(zhuǎn)化為平面問題,是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)為奇函數(shù),當x>0時,f(x)=lg(x+1),則f(-1)=-lg2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知A,B,C三點不共線,點O是平面ABC外的任意一點,若點P分別滿足下列關(guān)系:
(1)$\overrightarrow{OA}$$+2\overrightarrow{OB}$=6$\overrightarrow{OP}$$-3\overrightarrow{OC}$;
(2)$\overrightarrow{OP}$$+\overrightarrow{OC}$=4$\overrightarrow{OA}$-$\overrightarrow{OB}$.
試判斷點P是否與點A,B,C共面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.“x>y,且xy>0”是“$\frac{1}{x}$$<\frac{1}{y}$”的充分條件還是必要條件?試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.過雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F作傾斜角為45°的直線l與雙曲線右支交于A、B兩點,當a≤|AB|≤4a時,雙曲線C的離心率的取值范圍為( 。
A.[$\frac{\sqrt{30}}{5}$,$\frac{\sqrt{6}}{2}$]B.(1,$\frac{\sqrt{6}}{2}$]C.(1,$\frac{\sqrt{30}}{5}$]D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.2$\sqrt{1-sin8}$-$\sqrt{2+2cos8}$=4cos4-2sin4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,過曲線C:y=x3(x≥0)上點A1(2,8)作C的切線交x軸于點B1,過點B1作x軸的垂線交曲線C與點A2,過點A2作C的切線交x軸于點B2,再過點B2作x軸的垂線交曲線C與點A3,過點A3作C的切線交x軸于點B3,…、以此類推,得到一系列點:A1,B1,A2,B2,A3,B3,…記點An的橫坐標為an
(1)求數(shù)列{an}的通項公式;
(2)求|B1A2|+|B2A3|+|B3A4|+…+|BnAn+1|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在平行六面體ABCD-A′B′C′D′中,模與向量$\overrightarrow{A′B′}$的模相等的向量(不含$\overrightarrow{A′B′}$)有( 。
A.3個B.5個C.6個D.7個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.點A(a,1)在橢圓$\frac{x^2}{4}$+$\frac{y^2}{2}$=1的內(nèi)部,則a的取值范圍是( 。
A.$(-\sqrt{2},\sqrt{2})$B.$(-∞,-\sqrt{2})∪(\sqrt{2},+∞)$C.(-2,2)D.(-1,1)

查看答案和解析>>

同步練習冊答案