分析 若G,B,P,D四點共面,則G即為AH與平面PBD的交點,連接AC,BD交于點O,連接PO,則G即為PO與AH的交點,取HC的中點E,連接OE,結(jié)合三角形的中位線定理,可得答案.
解答 解:如下圖所示:
若G,B,P,D四點共面,
則G即為AH與平面PBD的交點,
連接AC,BD交于點O,連接PO,
則G即為PO與AH的交點,如下圖所示:
在截面PAC中,O為AC的中點,H為PC的三等分點,取HC的中點E,連接OE,
則OE=$\frac{1}{2}$AH=2GH,
故GH=$\frac{1}{4}$AH,
即AG=$\frac{3}{4}$AH,
故m=$\frac{3}{4}$.
點評 本題考查的知識點是四點共面問題,將空間問題轉(zhuǎn)化為平面問題,是解答的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{\sqrt{30}}{5}$,$\frac{\sqrt{6}}{2}$] | B. | (1,$\frac{\sqrt{6}}{2}$] | C. | (1,$\frac{\sqrt{30}}{5}$] | D. | [$\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3個 | B. | 5個 | C. | 6個 | D. | 7個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(-\sqrt{2},\sqrt{2})$ | B. | $(-∞,-\sqrt{2})∪(\sqrt{2},+∞)$ | C. | (-2,2) | D. | (-1,1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com