7.已知關(guān)于x的不等式|x-1|-|x+1|>|4m-2|的解集不是空集.
(1)求實數(shù)m的取值集合M;
(2)若a∈M,b∈M,設(shè)minA表示數(shù)集A的最小數(shù),I=min{2$\sqrt{a}$,$\frac{4\sqrt{ab}}{{a}^{2}+^{2}}$,2$\sqrt$},求證:I≤2.

分析 (1)先求出|x-1|-|x+1|的范圍,根據(jù)不等式|x-1|-|x+1|>|4m-2|的解集不是空集,得到|4m-2|<2,求出m的范圍即可;
(2)分別求出I≤2$\sqrt{a}$,I≤$\frac{4\sqrt{ab}}{{a}^{2}{+b}^{2}}$,I≤2$\sqrt$,得到I3的范圍,從而求出I的范圍即可.

解答 解:(1)∵-2≤|x-1|-|x+1|≤2,
又不等式|x-1|-|x+1|>|4m-2|的解集不是空集,
∴|4m-2|<2,解得:0<m<1,
∴實數(shù)m的取值集合M={m|0<m<1};
(2)由(1)得:0<a<1,0<b<1,
又I=min{2$\sqrt{a}$,$\frac{4\sqrt{ab}}{{a}^{2}+^{2}}$,2$\sqrt$},
∴I≤2$\sqrt{a}$,I≤$\frac{4\sqrt{ab}}{{a}^{2}{+b}^{2}}$,I≤2$\sqrt$,
∴I3≤2$\sqrt{a}$•$\frac{4\sqrt{ab}}{{a}^{2}{+b}^{2}}$•2$\sqrt$=$\frac{16ab}{{a}^{2}{+b}^{2}}$≤$\frac{16ab}{2ab}$=8,
∴I≤2.

點評 本題考查了不等式問題,考查絕對值的意義,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在正項等比數(shù)列{an}中,若3a1,$\frac{1}{2}$a3,2a2成等差數(shù)列,則$\frac{{a}_{2016}-{a}_{2017}}{{a}_{2014}-{a}_{2015}}$=( 。
A.3或-1B.9或1C.3D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知頂點在單位圓上的△ABC中,角A、B、C的對邊分別為a、b、c,且2acosA=ccosB+bcosC.
(1)cosA的值;
(2)若b2+c2=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)$\frac{2}{(1-i)i}$(i為復(fù)數(shù)單位)的共軛復(fù)數(shù)為( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+5,x≤2}\\{lo{g}_{\frac{1}{2}}(x-1)+1,x>2}\end{array}\right.$,若f(a2-3a)>f(2a-6),則實數(shù)a的取值范圍是(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合A={x|x+2<0},B={x|-4<x<3},則集合A∩B為(  )
A.{x|x<3}B.{x|-4<x<-2}C.{x|-4<x<2}D.{x|-2<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.圓x2+y2-2x+4y-20=0截直線5x-12y+c=0的弦長為8,
(1)求c的值;
(2)求直線y=x-11上的點到圓上點的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.△ABC中,角A,B,C的對邊分別為a,b,c,且2bcosC+c=2a.
(Ⅰ)求角B的大。
(Ⅱ)若$cosA=\frac{1}{7}$,求$\frac{c}{a}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列關(guān)于命題的說法錯誤的是( 。
A.命題“若x2-3x+2=0,則x=2”的逆否命題為“若x≠2,則x2-3x+2≠0”
B.“a=3”是“函數(shù)f(x)=logax在定義域上為增函數(shù)”的充分不必要條件
C.若命題p:?n∈N,3n>100,則¬p:?n∈N,3n≤100
D.命題“?x∈(-∞,0),3x<5x”是真命題

查看答案和解析>>

同步練習(xí)冊答案