5.在同一坐標(biāo)系中繪制函數(shù)y=x2-4x,y=x2-4|x|的圖象.

分析 利用描點(diǎn)作圖即可.

解答 解:y=x2-4x其圖象為(藍(lán)色曲線)所示,
y=x2-4|x|=$\left\{\begin{array}{l}{{x}^{2}-4x,x≥0}\\{{x}^{2}+4x,x<0}\end{array}\right.$
當(dāng)x<0其圖象為(紅色曲線)所示,當(dāng)x≥0時(shí),為藍(lán)色曲線(x≥0)的部分曲線.

點(diǎn)評(píng) 本題考查了函數(shù)圖象的畫(huà)法,關(guān)鍵是去絕對(duì)值化為分段函數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知α∈(0,π),若tan($\frac{π}{4}$-α)=$\frac{1}{3}$,則sin2α=( 。
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{5}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知x,y滿足不等式組$\left\{\begin{array}{l}x-4y≤-3\\ 3x+5y≤25\\ x≥1\end{array}\right.$,則函數(shù)z=2x+y取得最大值與最小值之和是( 。
A.3B.9C.12D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列說(shuō)法正確的是( 。
A.直線繞定直線旋轉(zhuǎn)形成柱面
B.半圓繞定直線旋轉(zhuǎn)形成球體
C.有兩個(gè)面互相平行,其余四個(gè)面都是等腰梯形的六面體是棱臺(tái)
D.圓柱的任意兩條母線所在的直線是相互平行的

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=2$\sqrt{x}$-$\sqrt{4-x}$的值域?yàn)椋ā 。?table class="qanwser">A.(-2,4)B.[-2,+∞)C.(-∞,4]D.[-2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=asinx+x+1,若f[ln(ln2)]=3,則f[ln(log2e)]=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知tanα=$\frac{1}{3}$,tanβ=-$\frac{1}{7}$,且0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π,則2α-β的值為( 。
A.-$\frac{π}{6}$B.-$\frac{π}{3}$C.-$\frac{π}{4}$D.-$\frac{3}{4}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y+1≥0}\\{x≤2}\end{array}\right.$.
(1)若z=x-2y,求z的最大值和最小值;
(2)若z=x2+y2,求z的最大值和最小值;
(3)若z=$\frac{y}{x}$,求z的最大值和最小值;
(4)z=ax+y(a<0)取得最大值的最優(yōu)解有無(wú)窮多個(gè),求a的值;
(5)z=ax+y取得的最大值為5,最小值為3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知集合A={x|2x2-7x+3≤0},集合B={x|x2-a<0,a∈R}.
(1)若a=4,求A∩B和A∪B.
(2)若A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案