18.已知$f(x)=\frac{{lnx+{2^x}}}{x^2}$,求f′(1)=2ln2-3.

分析 先求導(dǎo)數(shù),再代入計(jì)算,即可得出結(jié)論.

解答 解:∵$f(x)=\frac{{lnx+{2^x}}}{x^2}$,
∴f′(x)=$\frac{(\frac{1}{x}+{2}^{x}ln2){x}^{2}-(lnx+{2}^{x})•2x}{{x}^{4}}$
∴f′(x)=2ln2-3.
故答案為:2ln2-3

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的計(jì)算,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},從M到N有四種對(duì)應(yīng)如圖所示,其中能表示為M到N的函數(shù)關(guān)系的是( 。
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.△ABC的外接圓圓心為O,半徑為2,$\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow 0$,則$\overrightarrow{CB}$在$\overrightarrow{CA}$方向上的投影為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)$y=sin(-2x+\frac{π}{6})$的單調(diào)遞減區(qū)間是[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)=log2x.若a=4b,則f(a)-f(b)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知直角三角形的兩直角邊長(zhǎng)分別為2和4,求兩直角邊上的中線所夾的銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知$x=\frac{π}{6}$是函數(shù)$f(x)=({asinx+cosx})cosx-\frac{1}{2}$圖象的一條對(duì)稱軸.
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)作出函數(shù)f(x)在x∈[0,π]上的圖象簡(jiǎn)圖(列表,畫圖).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+sinx,當(dāng)0≤x<π時(shí),f(x)=0,則$f(\frac{7π}{6})$=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.0D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=4m(cos2(x+$\frac{π}{6}$)+$\frac{\sqrt{3}}{2}$sin2x)+n-2m(m≠0).
(1)求函數(shù)f(x)的最小正周期T;
(2)若m=1,函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值是1-$\sqrt{3}$,求n;
(3)若n=1,函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值是1-$\sqrt{3}$,求m.

查看答案和解析>>

同步練習(xí)冊(cè)答案