20.已知數(shù)列{an}滿足:an≠0,a1=$\frac{1}{3}$,an-an+1=2an•an+1.(n∈N*).
(1)求證:{$\frac{1}{{a}_{n}}$}是等差數(shù)列,并求出an;
(2)證明:a1a2+a2a3+…+anan+1<$\frac{1}{6}$.

分析 (1)兩邊除以an•an+1,由等差數(shù)列的定義和通項公式,即可得證,由等差數(shù)列的通項公式即可得到;
(2)運用數(shù)列的求和方法:裂項相消求和,運用不等式的性質(zhì),即可得證.

解答 證明:(1)a1=$\frac{1}{3}$,an-an+1=2an•an+1.可得
$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=2,則{$\frac{1}{{a}_{n}}$}是首項為3,公差為2的等差數(shù)列,
$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{1}}$+2(n-1)=3+2(n-1)=2n+1,
即有an=$\frac{1}{2n+1}$;
(2)證明:a1a2+a2a3+…+anan+1=$\frac{1}{3•5}$+$\frac{1}{5•7}$+…+$\frac{1}{(2n+1)(2n+3)}$
=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{2n+1}$-$\frac{1}{2n+3}$)
=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{2n+3}$)=$\frac{1}{6}$-$\frac{1}{2}$•$\frac{1}{2n+3}$<$\frac{1}{6}$.

點評 本題考查等差數(shù)列的定義和通項公式的運用,考查數(shù)列的求和方法:裂項相消求和,注意運用不等式的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.把300毫升溶液分給5個實驗小組,使每組所得成等差數(shù)列,且較多三組之和的$\frac{1}{7}$是較少兩組之和,則最少的那個組分得溶液5毫升.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.己知直線l過兩直線3x+4y-5=0,2x-3y+8=0的交點且與A(2,3),B(-4,-5)兩點距離相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某游泳池先開進水管注水,使用完畢后開排水管排水,存水量Q(噸)與時間t(小時)之間的函數(shù)關(guān)系如圖,則Q關(guān)于t的函數(shù)解析式為Q(t)=$\left\{\begin{array}{l}{20t,}&{0≤t≤2}\\{40,}&{2<t<5}\\{-\frac{40}{3}t+\frac{320}{3},}&{5<t≤8}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)tan2α=$\frac{3}{4}$(-π<α<π),求當(dāng)函數(shù)f(x)=sin(α+x)+sin(α-x)-2sinα的最小值為0時cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=(a+2cos2x)cos(2x+θ)為奇函數(shù),且f($\frac{π}{4}$)=0,其中a∈R,θ∈(0,π),則f($\frac{3π}{16}$)=-$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最小值為-2,且它的圖象經(jīng)過點(0,$\sqrt{3}$)和($\frac{5π}{6}$,0),且函數(shù)f(x)在[0,$\frac{π}{6}$]上單調(diào)遞增.
(I)求f(x)的解析式;
(H)若x∈[0,$\frac{5π}{8}$],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(x)=cos$\frac{π}{3}$x,則f(1)+f(2)+…+f(2015)=-337.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.△ABC的三邊長度分別是2,3,x,由所有滿足該條件的x構(gòu)成集合M,現(xiàn)從集合M中任取一x值,所得△ABC恰好是鈍角三角形的概率為( 。
A.$\frac{{4-\sqrt{13}+\sqrt{5}}}{4}$B.$\frac{{5-\sqrt{13}}}{4}$C.$\frac{3}{4}$D.$\frac{{\sqrt{5}-1}}{4}$

查看答案和解析>>

同步練習(xí)冊答案