5.已知函數(shù)f(x)=(a+2cos2x)cos(2x+θ)為奇函數(shù),且f($\frac{π}{4}$)=0,其中a∈R,θ∈(0,π),則f($\frac{3π}{16}$)=-$\frac{\sqrt{2}}{4}$.

分析 把x=$\frac{π}{4}$代入函數(shù)解析式可求得a的值,進而根據(jù)函數(shù)為奇函數(shù)推斷出f(0)=0,進而求得cosθ,則θ的值可得,即可求出f($\frac{3π}{16}$).

解答 解:f($\frac{π}{4}$)=-(a+1)sinθ=0,
∵θ∈(0,π).
∴sinθ≠0,
∴a+1=0,即a=-1
∵f(x)為奇函數(shù),
∴f(0)=(a+2)cosθ=0,
∴cosθ=0,θ=$\frac{π}{2}$.
∴f(x)=(-1+2cos2x)cos(2x+$\frac{π}{2}$)=-$\frac{1}{2}$sin4x,
∴f($\frac{3π}{16}$)=-$\frac{1}{2}$sin$\frac{3π}{4}$=-$\frac{\sqrt{2}}{4}$.
故答案為:-$\frac{\sqrt{2}}{4}$.

點評 本題主要考查了同角三角函數(shù)關系,三角函數(shù)恒等變換的應用,函數(shù)奇偶性問題.綜合運用了所學知識解決問題的能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.關于斜二側畫法,下列說法正確的是( 。
A.三角形的直觀圖可能是一條線段
B.平行四邊形的直觀圖一定是平行四邊形
C.正方形的直觀圖是正方形
D.菱形的直觀圖是菱形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.化簡:2sin300°+cos(-240°)-tan405°=-$\frac{3+2\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.i是虛數(shù)單位,若實數(shù)x,y滿足(1+i)x+(1-i)y=2,復數(shù)z=$\frac{x+i}{y-i}$(i是虛數(shù)單位),$\overline{z}$是z的共軛復數(shù),則z•$\overline{z}$=(  )
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}滿足:an≠0,a1=$\frac{1}{3}$,an-an+1=2an•an+1.(n∈N*).
(1)求證:{$\frac{1}{{a}_{n}}$}是等差數(shù)列,并求出an;
(2)證明:a1a2+a2a3+…+anan+1<$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知集合A={x|x2-1=0},則有:
1∈A,{-1}⊆A,
∅?A,{-1,1}=A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,已知拋物線y=ax2+bx+c(a≠0)的圖象過原點,并交x軸于A(-6,0),拋物線的頂點B的縱坐標為-$\sqrt{3}$.
(1)求拋物線解析式,并求其頂點B的坐標;
(2)在拋物線上是否存在點Q,使得△AQ0與△AOB相似,如果存在.請求出點Q的坐標;如果不存在.請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列,a1=b1=1,且數(shù)列{an•bn}的前n項和Sn=k-$\frac{n+2}{{2}^{n-1}}$(k是常數(shù),n∈N*).
(1)求k值,并求數(shù)列{an}與數(shù)列{bn}的通項公式;
(2)求數(shù)列{Sn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=|x+1|+|x-3|.
(1)請寫出函數(shù)f(x)在每段區(qū)間上的解析式,并在圖上的直角坐標系中作出函數(shù)f(x)的圖象;
(2)若不等式|x+1|+|x-3|≥a+$\frac{1}{a}$對任意的實數(shù)x恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案