18.已知p:x2+2x-3<0;q:1-a≤x≤1+a,且q是p的必要不充分條件,則a的取值范圍是(  )
A.(4,+∞)B.(-∞,0]C.[4,+∞)D.(-∞,0)

分析 p:x2+2x-3<0,解得-3<x<1.由于q是p的必要不充分條件,可得$\left\{\begin{array}{l}{1-a≤-3}\\{1<1+a}\end{array}\right.$,解得a范圍即可.

解答 解:p:x2+2x-3<0,解得-3<x<1;
q:1-a≤x≤1+a,
∵q是p的必要不充分條件,
∴$\left\{\begin{array}{l}1-a≤-3\\ 1≤1+a\end{array}\right.$,解得a≥4.
故選:C.

點(diǎn)評(píng) 本題考查了簡(jiǎn)易邏輯的判定方法、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)是R上最小正周期為2的周期函數(shù),當(dāng)0≤x<2時(shí)f(x)=x2-x,則函數(shù)y=f(x)的圖象在區(qū)間[0,6]上與x軸的交點(diǎn)個(gè)數(shù)為(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)y=2sin(ωx+φ)的部分圖象如圖所示,則ω,φ可以取的一組值是(  )
A.ω=2,φ=-$\frac{π}{3}$B.ω=2,φ=$\frac{π}{3}$C.ω=2,ω=-$\frac{π}{6}$D.ω=1,φ=$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{x-y-1≤0}\\{2x-y-3≥0}\end{array}\right.$,在區(qū)間(0,5)內(nèi)任取兩數(shù)a、b.則目標(biāo)函數(shù)z=ax+by的最小值大于2$\sqrt{5}$的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知兩條直線:y=(a-1)x-2和3x+(a+3)y-1=0互相平行,則a等于 ( 。
A.0 或-2B.-2 或-1C.1或-2D.0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)y=x${\;}^{\frac{1}{2}}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|x≠0}B.{x|x≥0}C.{x|x>0}D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列四組函數(shù)中,表示相等函數(shù)的一組是( 。
A.f(x)=1,f(x)=x0B.f(x)=|x|,f(t)=$\sqrt{t^2}$
C.f(x)=$\frac{x^2-1}{x-1}$,g(x)=x+1D.f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{x^2-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{x}$,$\overrightarrow{y}$都是向量,且4$\overrightarrow{x}$+3$\overrightarrow{y}$=$\overrightarrow{a}$,5$\overrightarrow{x}$-6$\overrightarrow{y}$=$\overrightarrow$,試用$\overrightarrow{a}$,$\overrightarrow$分別表示$\overrightarrow{x}$,$\overrightarrow{y}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知點(diǎn)A,B在單位圓上,A(-$\frac{3}{5}$,$\frac{4}{5}$),B(1,0),∠BOA=a,如圖所示
(1)求sinα+cosα;
(2)若tanθ=cotα,θ∈(-$\frac{π}{2}$,0),求sinθ及cosθ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案