8.(1)解不等式:|2x-2|<|x-4|;
(2)記(1)中不等式的解集為A,當(dāng)a,b∈A時(shí),證明:2|a+b|<|4+ab|

分析 (1)不等式|2x-2|<|x-4|,即 (2x-2)2<(x-4)2,由此求得不等式的解集.
(2)由題意可得-2<a<2,-2<b<2,用比較法證得|4+ab|2-(2|a+b|)2>0,可得不等式 2|a+b|<|4+ab|成立.

解答 解:(1)不等式:|2x-2|<|x-4|,即 (2x-2)2<(x-4)2,即 3x2<12,
求得-2<x<2,故不等式的解集為(-2,2).
(2)記(1)中不等式的解集為A,當(dāng)a,b∈A時(shí),有-2<a<2,-2<b<2.
∵|4+ab|2-(2|a+b|)2=16+8ab+a2•b2-4(a2+2ab+b2
=16+a2•b2-4a2-4b2=4(4-b2)+a2(b2-4)=(4-b2)(4-a2)>0,
∴|4+ab|>2|a+b|,即 不等式 2|a+b|<|4+ab|成立.

點(diǎn)評(píng) 本題考查絕對(duì)值函數(shù),考查解不等式,考查不等式的證明,解題的關(guān)鍵是將不等式寫成分段函數(shù),利用作差法證明不等式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.直線$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}\right.$(t為參數(shù))被圓x2+y2=4截得的弦長(zhǎng)等于( 。
A.$\frac{{2\sqrt{55}}}{5}$B.$\frac{22}{5}$C.$\frac{{2\sqrt{11}}}{5}$D.$\frac{{22\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}滿足a1=a2=2,2nan+1-(3n+2)an+(n+1)an-1=0(n≥2),求a2009的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={x|4≤x<8,x∈R},B={x|6<x<9,x∈R},C={x|x>a,x∈R}.
(1)求A∪B;
(2)(∁UA)∩B;    
(3)若A∩C=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知拋物線y2=4x的焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),M為拋物線上一點(diǎn)且|MF|=3,則△OMF的面積為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知直線l:x+y=b交拋物線C:y2=2px(b>p>0)于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),且$\overrightarrow{OA}•\overrightarrow{OB}$=8,C的焦點(diǎn)F到直線1的距離為$\frac{7\sqrt{2}}{4}$.
(1)求拋物線C的方程;
(2)求△OAB外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,ABCD為正方形,且PD=AB=1,G為△ABC的重心,則PG與底面所成的角θ滿足( 。
A.θ=$\frac{π}{4}$B.cosθ=$\frac{2\sqrt{34}}{17}$C.tanθ=$\frac{2\sqrt{2}}{3}$D.sinθ=$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求函數(shù)y=2sin(3x-$\frac{π}{4}$),x∈[0,$\frac{π}{2}$]的最值,并說明取得最值時(shí)x的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求函數(shù)y=($\frac{1}{2}$)${\;}^{{x}^{2}-2x}$的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案