2.以F1(-1,0),F(xiàn)2(1,0)為焦點(diǎn)且與直線x-y+3=0有公共點(diǎn)的橢圓中,離心率最大的橢圓方程是( 。
A.$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{19}$=1B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1C.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1

分析 設(shè)出橢圓的方程為$\frac{{x}^{2}}{^{2}+1}+\frac{{y}^{2}}{^{2}}=1$,求出離心率的平方,將直線方程代入橢圓方程得得到的關(guān)于x的一元二次方程的判別式大于0,求出 b2 的最小值,此時(shí)的離心率最大,離心率最大的橢圓方程可得.

解答 解:由題意知,c=1,a2-b2=1,故可設(shè)橢圓的方程為$\frac{{x}^{2}}{^{2}+1}+\frac{{y}^{2}}{^{2}}=1$,
離心率的平方為:$\frac{1}{^{2}+1}$   ①,
∵直線x-y+3=0與橢圓有公共點(diǎn),將直線方程代入橢圓方程得
(2b2+1)x2+6(b2+1)x+8b2+9-b4=0,
由△=36(b4+2b2+1)-4(2b2+1)( 8b2+9-b4 )≥0,
∴b4-3b2-4≥0,∴b2≥4,或 b2≤-1 (舍去),
∴b2 的最小值為4,
∴①的最大值為 $\frac{1}{5}$,此時(shí),a2=b2+1=5,
∴離心率最大的橢圓方程是:$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{4}=1$,
故選:C.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程和簡(jiǎn)單性質(zhì),利用直線和橢圓有交點(diǎn)可得判別式大于或等于0.求解b的最大值是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列函數(shù)中,既是偶函數(shù)又在(-∞,0)上單調(diào)遞增的是( 。
A.y=x2B.y=2|x|C.y=sin xD.y=log2$\frac{1}{|x|}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=(x-1)ln|x|的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)$f(x)={3^{|{{log}_3}x|}}-|x-\frac{1}{x}|$的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={x|1≤x<7},B={x|2<x<10},C={x|5-a<x≤a}.
(Ⅰ)求A∪B,(∁RA)∩B;
(Ⅱ)若C⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若集合A滿足A⊆B,且A⊆C,其中B={1,2,3,5,9},C={0,2,3,5,8,9},則滿足上述條件的集合A的個(gè)數(shù)為( 。
A.15B.16C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xOy,已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)C(3,$\frac{7}{4}$),其左右焦點(diǎn)分別為F1,F(xiàn)2,且F2(3,0),長(zhǎng)軸的左右兩個(gè)端點(diǎn)為A,B.
(1)求橢圓E的方程;
(2)設(shè)點(diǎn)C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為D.
①若點(diǎn)P在橢圓E上,直線CP和DP的斜率都存在且不為0,試問直線CP和DP的斜率之積是否為定值?若是,求此定值;若不是,請(qǐng)說明理由;
②若N為直線x=$\frac{16}{3}$上一點(diǎn)(在x軸上方),AN與橢圓交于點(diǎn)M,且$\overrightarrow{AN}$•$\overrightarrow{M{F}_{2}}$=0,記$\overrightarrow{AM}$=λ$\overrightarrow{MN}$,求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=(2x-a+1)ln(x+a+1)的定義域?yàn)椋?a-1,+∞),若f(x)≥0恒成立,則a的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.不等式|x|3-2x2+1<0的解集為$({-\frac{{1+\sqrt{5}}}{2},-1})∪({1,\frac{{1+\sqrt{5}}}{2}})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案