分析 根據(jù)向量數(shù)量積的坐標(biāo)公式以及兩角和差的正弦公式進(jìn)行求解即可.
解答 解:∵$\overrightarrow a=(cos40°,sin40°),\;\overrightarrow b=(sin20°,cos20°)$,
∴$\overrightarrow a$•$\overrightarrow b$=cos40°sin20°+sin40°cos20°=sin(40°+20°)=sin60°=$\frac{\sqrt{3}}{2}$,
故答案為:$\frac{\sqrt{3}}{2}$.
點(diǎn)評 本題主要考查向量數(shù)量積的計(jì)算,根據(jù)向量數(shù)量積的坐標(biāo)公式以及兩角和差的正弦公式是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,-$\frac{1}{2}$] | B. | (-∞,1) | C. | [$\frac{1}{2}$,1) | D. | (-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | $-\frac{11}{3}$ | D. | $-\frac{3}{11}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{1}{8}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “?x∈R,x2-4x+1>0”的否定是“?x∈R,x2-4x+1<0” | |
B. | 若x≥5,y≥6,則x+y≥11的逆否命題是假命題 | |
C. | “x>1”是“$\frac{1}{x}<1$”的充要條件 | |
D. | 已知α,β為兩個不同的平面,m為α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的必要不充分條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com