分析 先求出當(dāng)x>0時(shí)的解析式,結(jié)合函數(shù)奇偶性的性質(zhì)進(jìn)行轉(zhuǎn)化求解即可.
解答 解:∵當(dāng)x>0時(shí),$f(x)=2+f(\frac{1}{2}){log_2}x$,
∴f($\frac{1}{2}$)=2+f($\frac{1}{2}$)log2$\frac{1}{2}$=2-f($\frac{1}{2}$),
∴f($\frac{1}{2}$)=1,
即f(x)=2+log2x,
∵f(x)為奇函數(shù),
∴f(-2)=-f(2)=-(2+log22)=-3,
故答案為:-3
點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,根據(jù)條件結(jié)合函數(shù)奇偶性的性質(zhì)是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | -1 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(-∞,-4]∪[\frac{3}{4},+∞)$ | B. | $(-∞,-\frac{1}{4}]∪[\frac{3}{4},+∞)$ | C. | $[-4,\frac{3}{4}]$ | D. | $[\frac{3}{4},4]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1項(xiàng) | B. | 2項(xiàng) | C. | 3項(xiàng) | D. | 4項(xiàng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{CD}=\frac{{\overrightarrow{CA}}}{{|\overrightarrow{CA}|}}+\frac{{\overrightarrow{CB}}}{{|\overrightarrow{CB}|}}$ | B. | $\overrightarrow{AC}=\overrightarrow{AC}•\overrightarrow{AB}$ | C. | $\overrightarrow{BC}=\overrightarrow{BC}•\overrightarrow{BA}$ | D. | $(\overrightarrow{CA}+\overrightarrow{CB})•(\overrightarrow{CA}-\overrightarrow{CB})=0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A∩B | B. | A∪B | C. | A | D. | B |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com