13.復(fù)數(shù)z=$\frac{25}{3-4i}$的虛部為4.

分析 直接由復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡,求得z后即可求出虛部.

解答 解:由題意得,z=$\frac{25}{3-4i}$=$\frac{25(3+4i)}{(3-4i)(3+4i)}$=3+4i,
∴復(fù)數(shù)z=$\frac{25}{3-4i}$的虛部為4,
故答案為:4.

點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的除法運(yùn)算:分母實(shí)數(shù)化,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知角α終邊上一點(diǎn)P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{2015π}{2}-α)tan(\frac{9π}{2}+α)}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)a>b>0,m=$\sqrt{a-b}$,n=$\sqrt{a}$-$\sqrt$,則m,n的大小關(guān)系是m>n.(選>,=,<)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$,對任意的m∈[-2,2],f(mx-3)+f(x)<0恒成立,則x的取值范圍是(-3,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知四個(gè)數(shù)101 010(2)、111(5)、32(8)、54(6),其中最小的是32(8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.橢圓$\frac{x^2}{16}+\frac{y^2}{4}=1$上的各點(diǎn)橫坐標(biāo)縮短為原來的$\frac{1}{2}$,所得曲線的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2cos2x+a
(1)求函數(shù)f(x)的最小正周期以及單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{4}$]時(shí),函數(shù)f(x)有最大值4,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,以等腰直角三角形ABC的斜邊BC上的高AD為折痕,把△ABD和△ACD折
成互相垂直的兩個(gè)平面后,某學(xué)生得出下列四個(gè)結(jié)論
①BD⊥AC;              
②△BAC是等邊三角形;
③三棱錐D-ABC是正三棱錐;
④平面ADC⊥平面ABC
其中正確的是( 。
A.①②④B.①②③C.②③④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=x2+bx-3,對于給定的實(shí)數(shù)b,f(x)在區(qū)間[b-2,b+2]上有最大值M(b)和最小值m(b),記g(b)=M(b)-m(b).
(1)當(dāng)b>2時(shí),求g(b)的解析式;
(2)求g(b)的最小值.

查看答案和解析>>

同步練習(xí)冊答案