4.已知函數(shù)$y=sin\frac{aπ}{2}x(a>0)$在區(qū)間(0,1)內至少取得兩次最小值,且至多取得三次最大值,則a的取值范圍是(7,13].

分析 令t=$\frac{aπ}{2}$x,則題目轉化為函數(shù)y=sint在區(qū)間(0,$\frac{aπ}{2}$)內至少取得兩次最小值且至多取得三次最大值,據(jù)正弦函數(shù)的圖象即可求a的取值范圍.

解答 解:函數(shù)y=sin$\frac{aπ}{2}$x(a>0)在區(qū)間(0,1)內至少取得兩次最小值且至多取得三次最大值,
可以令t=$\frac{aπ}{2}$x,則題目轉化為復合函數(shù)y=sint在區(qū)間(0,$\frac{aπ}{2}$)內至少取得兩次最小值且至多取得三次最大值,
如圖:

y=sint在開區(qū)間(0,$\frac{aπ}{2}$)內至少取得兩次最小值,則 $\frac{aπ}{2}$>$\frac{7}{2}$π.
y=sint在開區(qū)間(0,$\frac{aπ}{2}$)內至多取得三次最大值,則 $\frac{aπ}{2}$≤$\frac{13}{2}$.
得到7<a≤13.
故答案為:(7,13].

點評 本題主要考查了正弦函數(shù)的圖象和性質,考查了轉化思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.若M(x,y)滿足$2\sqrt{5}\sqrt{{{(x-2)}^2}+{{(y-1)}^2}}=|{2x+y-4}|$,則M的軌跡( 。
A.雙曲線B.直線C.橢圓D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知a,b都是正實數(shù),且滿足log9(9a+b)=log3$\sqrt{ab}$,則3a+b的最小值為12+6$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知全集U=R,集合A={x|4x+a>0},B={x|x2-2x-3>0}.
(1)當a=4時,求集合A∩B;
(2)若A∩(∁UB)=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.(理)下列四個命題中真命題的序號是①③.
①若存在實數(shù)x,y,使$\overrightarrow p=x\overrightarrow a+y\overrightarrow b$,則$\overrightarrow P$與$\overrightarrow a,\overrightarrow b$共面;
②若$\overrightarrow P$與$\overrightarrow a,\overrightarrow b$共面,則存在實數(shù)x,y,使$\overrightarrow p=x\overrightarrow a+y\overrightarrow b$;
③若存在實數(shù)x,y,使$\overrightarrow{MP}=x\overrightarrow{MA}+y\overrightarrow{MB}$,則P,M,A,B共面;
④若P,M,A,B共面,則存在實數(shù)x,y,使$\overrightarrow{MP}=x\overrightarrow{MA}+y\overrightarrow{MB}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.下列命題中,
①方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1表示曲線C可能為圓;
②$\left\{\begin{array}{l}{x>1}\\{y>2}\end{array}\right.$是$\left\{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}\right.$的充要條件;
③一個命題的逆命題為真,它的否命題也一定為真;
④“9<k<15”是“方程$\frac{{x}^{2}}{15-k}$+$\frac{{y}^{2}}{k-9}$=1表示橢圓”的充要條件.
⑤設P是以F1、F2為焦點的雙曲線一點,且$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$=0,若△PF1F2的面積為9,則雙曲線的虛軸長為6;其中真命題的序號是①③⑤(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知雙曲線$\frac{x^2}{a^2}\;-\;\frac{y^2}{b^2}\;=\;1\;({a>0,b>0})$與圓${x^2}+{y^2}\;={c^2}\;({c\;=\sqrt{{a^2}+{b^2}}})$交于A、B、C、D四點,若四邊形ABCD是正方形,則雙曲線的離心率是(  )
A.$\sqrt{2+\sqrt{2}}$B.$\sqrt{2+2\sqrt{2}}$C.$\sqrt{1+\sqrt{2}}$D.$\sqrt{1+2\sqrt{2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.動直線l與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1只有一個公共點P,且點P在第一象限,直線l1過原點且與l垂直,則P點到直線l1的距離的最大值為2-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖,若輸出的結果大于或等于1,則輸入的x的取值范圍是( 。
A.(-4,2]∪[2,+∞)B.[-4,1]∪[2,+∞)C.[-4,-2]∪{1}∪[4,+∞)D.(-∞,-4]∪{1}∪[2,+∞)

查看答案和解析>>

同步練習冊答案