A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
分析 設D是BC的中點,A A’與面PBC交于O,推導出A’A=A’B=CA=CB=1,從而得到AB⊥平面A′CE,由此能求出A’C與AB所成角.
解答 解:設D是BC的中點,A A’與面PBC交于O,
∵△ABC是邊長為1的正三角形,PA⊥平面ABC,且PA=$\frac{\sqrt{6}}{2}$,點A關于平面PBC的對稱點為A′,
∴O必在PD上,AA′⊥平面PBC,
∴∠AOD=∠PAD=90°,∠ODA=∠PDA,
∴△ADO∽△PDA,∴$\frac{AO}{AD}=\frac{PA}{PD}$,
∵AD=$\sqrt{{1}^{2}-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$,PA=$\frac{\sqrt{6}}{4}$,
∴PD=$\sqrt{\frac{3}{4}+\frac{3}{8}}$=$\frac{3\sqrt{2}}{4}$,AO=$\frac{\frac{\sqrt{6}}{4}×\frac{\sqrt{3}}{2}}{\frac{3\sqrt{2}}{4}}$=$\frac{1}{2}$,AA′=1,
∵又A與A’關于平面PBC對稱,
∴A′B=AB=1,
∵A’A=A’B=CA=CB=1,
取AB中點E,連結A′E,CE,
則A′E⊥AB,CE⊥AE,又A′E∩CE=E,
∴AB⊥平面A′CE,∴A’C⊥AB,
∴A’C與AB所成角為$\frac{π}{2}$.
故選:D.
點評 本題考查異面直線所成角的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com