16.若函數(shù)f(x)=x3+x2+mx+1在(-∞,+∞)上單調(diào)遞增,求m.

分析 f(x)為三次多項(xiàng)式函數(shù),解決單調(diào)性時(shí)利用導(dǎo)數(shù),函數(shù)f(x)是R上的單調(diào)遞增函數(shù),f′(x)≥0在R上恒成立.

解答 解:∵函數(shù)f(x)=x3+x2+mx+1在(-∞,+∞)上單調(diào)遞增,
∴f′(x)=3x2+2x+m≥0在R上恒成立,
即3x2+2x+m≥0;
由△=4-4×3m≤0,
解得m≥$\frac{1}{3}$,
∴m的取值范圍是m≥$\frac{1}{3}$.

點(diǎn)評 本題考查了利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),現(xiàn)有橢圓上一點(diǎn)M到兩焦點(diǎn)的距離之和為20,且|MF1|、|F1F2|、|MF2|成等差數(shù)列,試求該橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足Sn+1=2Sn+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2-a|x-1|-1.
(1)當(dāng)a=4時(shí),求y=f(x)的單調(diào)區(qū)間;
(2)若x∈R時(shí),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知公比為2的等比數(shù)列{an}的前n項(xiàng)和為Sn,若a4+a5+a6=16,則S9=( 。
A.56B.128C.144D.146

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,a=12,A=60°,三角形有兩解,則邊b的取值范圍為(12,8$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.復(fù)數(shù)z=3cosθ+isinθ(θ∈R)對應(yīng)點(diǎn)的軌跡是橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若f(x)=$\sqrt{x}$,φ(x)=1+sin2x.則f[φ(x)]=|sinx+cosx|,φ[f(x)]=(sin$\sqrt{x}$+cos$\sqrt{x}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.圓O的半徑為1,P為圓周上一點(diǎn),現(xiàn)將如圖放置的邊長為1的正三角形(實(shí)線所示,正三角形的頂點(diǎn)A和點(diǎn)P重合)沿著圓周順時(shí)針滾動(dòng),經(jīng)過若干次滾動(dòng),點(diǎn)A第一次回到點(diǎn)P的位置,則點(diǎn)A走過的路徑的長度為( 。
A.πB.$\frac{4}{3}$πC.$\frac{5}{3}$πD.

查看答案和解析>>

同步練習(xí)冊答案